

E-BOOK

- www.BDeBooks.com
- FB.com/BDeBooksCom
- BDeBooks.Com@gmail.com

বাংলাদেশ কারিণরি শিক্ষা বোর্ড কর্তৃক চালুকৃত নতুন সিলেবাস অনুযায়ী প্রকৌশল ডিপ্লোমা শিক্ষাক্রমের রেক্রিজারেশন অ্যান্ড এয়ারকভিশনিং টেকনোলজির ঘঠ পর্বের ছাত্রছাত্রীদের জন্য প্রণীত

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং Advanced Refrigeration and Airconditioning

Subject Code: 7261

রচনায়

প্ৰকৌশলী বাবু সাহা

চীক ইনস্ট্রাষ্টর (মেকানিক্যাল), রংপুর পলিটেকনিক ইনস্টিটিউট, রংপুর প্রাক্তন চীক ইনস্ট্রাষ্ট্রর ও বিভাগীর প্রধান, পলিটেকনিক ইনস্টিটিউট, পটুরাধালী

প্রকৌশলী এমদাদুল হক খাঁন

জ্বনিয়র ইনস্টাইর ও বিভাগীয় প্রধান (রেফ্রিজারেশন অ্যান্ড প্রয়ারকভিগনিং টেকনোলজি) পটুয়াখালী পলিটেকনিক ইনস্টিটিউট, পটুয়াখালী

সম্পাদনায়

আবু মোহাম্মদ আতিকুল্যা

ইনস্ট্রাইর (আরএসি) কিশোরগঞ্জ পলিটেকনিক ইনস্টিটিউট, করিমগঞ্জ, কিশোরগঞ্জ

প্রকাশকঃ হক পারনিকেশনস্-এর পক্ষে रावी कारानाता रक

৩৮ বাংলাবাজার (২য় জলা), ঢাকা-১১০০ ফোন ঃ ৯৫৮০৩৭০

[ध्यानक कर्जुक अकम एउ अरविक्ज]

প্ৰবন্ধ প্ৰকাশ

১ মে ২০০৯

দ্বিতীয় প্রকাশ

ঃ ২০ এপ্রিল ২০১৩

তৃতীয় প্ৰকাশ

ঃ ১৮ আগস্ট ২০১৫

চতুৰ্ব প্ৰকাশ

ঃ ১ জুন ২০১৬

পরিমার্কিত, পরিবর্ধিত ৪ সংশোধিত সংষ্করণ ঃ

পঞ্চ প্ৰকাশ

ঃ ১ জানুয়ারি ২০১৭

श्रष्टम् भविरुद्धवाग्र

মোঃ আশরাফুল হক আলো

नार्विक छड़ावसाज

ইঞ্জিঃ মোঃ হামিদুল হক মামূন

रिद्वाक्दन

জি. মাওলা কম্পিউটারস্

কশ্পিউটার কম্পেতে : জি. মাওলা কম্পিউটারস্

बुद्धस्य

ঃ জি. মাওলা প্রিন্টিং প্রেস

৩৪ শ্রীস দাস লেন, বাংলাবাজার, ঢাকা-১১০০

মূল্য ঃ ২০০ টাকা মাত্র

আমাদের কিছু কথা

বিসমিল্লাহ্রি রাহ্মানির রাহিম

মহান সৃষ্টিকর্তার অশেষ মেহেরবাণিতে আমাদের লেখা রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং টেকনোলজির ছাত্রছাত্রীদের জন্য "অ্যাডভালড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং (৭২৬১)" বইটি প্রকাশিত হল। বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক প্রবর্তিত চার বছর মেয়াদি ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রমের নতুন সিলেবাস অনুযায়ী বইটি প্রণয়ন করা হয়েছে। বইটিতে সর্বাধুনিক প্রযুক্তির তথ্যের সংযোজন করতে চেষ্টা করেছি। আশা করি বইটি পাঠ করে ছাত্রছাত্রী এবং শিক্ষক-শিক্ষিকাগণ উপকৃত হবেন।

আমাদের এ বইটি প্রণয়নে সহযোগিতা করার জন্য শ্রদ্ধা নিবেদন করছি আমার শিক্ষাগুরু জনাব মোঃ সোলায়মান, প্রাক্তন বিভাগীয় প্রধান (পাওয়ার), ম.প.ই.; জনাব মোঃ রেদওয়ানুর রহমান (ইনস্ট্রান্টর পাওয়ার), ঢা.প.ই.ও জনাব সুলতানা কবির (ইনস্ট্রান্টর পাওয়ার), ঢা.প.ই-কে এবং ধন্যবাদ জানাচিছ বন্ধু ও সহকর্মী মোঃ মশিউর রহমান (বুলবুল) ও মোহাম্মদ জাহিদুল হাসান বুলবুলকে।

বইটির পাগুলিপি প্রণয়নে দেশি-বিদেশি অনেক লেখকের বই থেকে সাহায্য নেয়া হয়েছে। এজন্য তাদের কাছে আমরা ঋণী।

সর্বোপরি ধন্যবাদ জানাচ্ছি মোঃ আশরাফুল হক আলো, ব্যবস্থাপনা পরিচালক, হক পাবলিকেশনস্, বইটি রচনা ও প্রকাশে বিভিন্নভাবে সহযোগিতা করার জন্য।

খুব অল্প সময়ে বইটির পাণ্ডুলিপি প্রস্তুত করা হয়েছে, তাই পূর্ণাঙ্গ তথ্যের স্বল্পতা থাকতে পারে। এ ছাড়াও বইটিতে মুদ্রণজনিত ভূলভ্রান্তি থাকতে পারে, পরবর্তীতে সংশোধনের আলা রাখি। বইটিতে কোন প্রকার তথ্যের বিভ্রান্তি, পরিবর্তন, পরিবর্ধন ও সংশোধনে আপনাদের সুচিন্তিত মতামত সাদরে গৃহীত হবে।

পরিশেষে বলতে চাই, যাদের জন্য আমাদের এ ক্ষুদ্র প্রচেষ্টা, তারা যদি বইটি পড়ে সামান্য উপকৃত ২য়, তবেই আমাদের প্রচেষ্টা সার্থক হবে।

> বিনীত প্রকৌশলী বারু সাহা প্রকৌশলী এমদাদুল হক ধীন

भवस अट्हा सा ७ ताता रक

সিলেবাস

7261 ADVANCED REFRIGERATION AND AIRCONDITIONING

3 3 4

AIMS

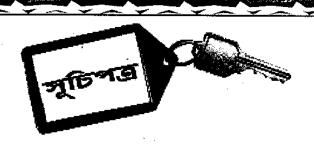
To provide the students with an opportunity to acquire knowledge, skill and attitude in the area of advanced refrigeration and air-conditioning with special compasses on:

- P.H & T.S diagram
- Compound vapor compression system
- Vapor compression systems with multiple evaporators and compressors
- Solar heating and cooling
- Refrigerants & refrigerant oils
- Refrigerant Recovery, Recycling And Reclaim
- Heat pump
- Heat exchanger
- Evaporating cooling systems.

SHORT DESCRIPTION

Compound vapor compression system; Vapor compression system with multiple evaporator and compressors; Solar heating systems; Solar cooling systems; Refrigerant; CFCs and environmental friendly refrigerants; Refrigerant oil; Refrigerant recovery, recycling & reclaim; Heat pump; Heat exchanger and Evaporative cooling system, P.H diagram.

DETAIL DESCRIPTION


Theory:

- Understand the P.H & T.S diagram of different Refrigerant of simple Vapor Compression Refrigeration system.
 - 1.1 State what is meant by P.H & T.S diagram.
 - 1.2 Draw a typical P.H diagram & T-S diagram.
 - 1.3 Describe the different line and zone of P.H & T.S diagram.
 - 1.4 ORepresent Vapor compression cycle on P.H diagram at different condition.
 - 1.5 Explain P.H chart to determine different value of refrigerant of vapor compression cycle.
 - 1.6 Solved problems with P.H chart of different refrigerant at various condition.
- Understand the compound vapor compression system.
 - 2.1 State the meaning of compound vapor compression system.
 - 2.2 Mention the advantages of compound vapor compression with inter cooler.
 - 2.3 Name the different types of compound vapor compression with inter cooler.
 - 2.4 Describe the two stage compression with liquid inter cooler.
 - 2.5 Describe the two stage compression with water intercooler and liquid sub-cooler.
 - 2.6 Describe the two stage compression with water inter cooler, liquid subcooler and liquid flash chamber.
 - 2.7 Describe the three stage compression with water inter cooler.
 - 2.8 Solve problems relating the compound vapor compression system.

Understand the vapor compression system with multiple evaporators and compressors. 3.1 Outline the importance of vapor compression systems with multiple evaporators and compressors. 3.2 Mention the different types of multiple evaporators and compressors system. 3.3 Describe the multiple evaporators at same temperature with single compressor and expansion valve. Describe the multiple evaporators at different temperature with single 3.4 compressor individual, expansion valve and back pressure valve. 3.5 Describe the multiple evaporator at different temperature with single compressor, multiple expansion and back pressure valve. 3.6 Describe the multiple evaporators at different temperature with individual compressor and individual expansion valve. 3.7 Describe the multiple evaporators at different temperature with individual compressors and multiple expansion valves. 3.8 Describe the multiple evaporators at different temperatures with compound compressor, individual expansion valve and flash inter cooling. 3.9 Describe the cascade system of low temperature refrigeration. 3.10 Describe three stage cascade system with schematic and P.H diagram. 3.11 Solve problems. 4. Understand the features of solar heating system. State what is meant by solar heating system. 4.1 Mention the types of solar heating. 4.2 4.3 Describe the operation of different types of solar heat collection. Describe the operation of solar air type heating system. 4.4 4.5 Describe the operation of liquid type solar heating system. Understand the features of solar cooling system. 5.1 State what is meant by solar cooling system. Mention the methods of cooling by using solar energy, 5,2 5.3 Describe the operation of the different types of solar cooling system. Describe the solar heat operated year round air-conditioning system. 5.4 5.5 Describe the operation of a solar heat operated dehumidifier. 5.6 Describe the operation of solar operated heat pump system. Understand the features of refrigerant. 6.1 Mention the physical properties of an ideal refrigerant. 6.2 Mention the chemical properties of an ideal refrigerant. 6.3 Mention the thermodynamic properties of an ideal refrigerant. Mention the classification of the refrigerant. 6.4 Describe Hydrocarbon Refrigerant. 6.5 6.6 Describe the properties of refrigerant as Halo Carbon- R-134a, zeotropic R-400a to R-416a, Azeotropic refrigerant R-500 to R-507, Hydrocarbon refrigerant R-290, R-600, R-600a and H C blend, inorganic refrigerant R-717, R-718, R-728, R-729, R-740 and R-69s. 6.7 Describe the designation system for refrigerants. Mention the applications of commonly used refrigerants. 6.8 Explain the effects of condensing pressure, evaporating temperature, 6.9 boiling point, critical temperature and specific volume on refrigeration cycle. Mention the color code of different refrigerant cylinder. 6.10 Describe the handling and storage procedure of refrigerant and refrigerant cylinder. 6.11 Mention the safety requirement when handling and working with refrigerant.

- 7. Understand the features of the CFCs and environmental friendly refrigerants.
 - 7.1 State what is meant by the CFC.
 - 7.2 State what is meant by environmental friendly refrigerant.
 - 7.3 List the environmental friendly refrigerant.
 - 7.4 State what is meant by ODS, ODP, and GWP.
 - 7.5 Explain ozone layered depleting, green house effect and global warming.
 - 7.6 Mention the chemical reaction of CFCs with ozone.
 - 7.7 Compare commonly used CFC refrigerants with non CFC refrigerants regarding on ODP, GWP and atmospheric life.
 - 7.8 Mention the Montreal protocols and the clean air acts on substance that deplete the ozone layer.
 - 7.9 Mention the environmental protection agency (EPA) rules governing fully halogenated refrigerants (CFCs).
- 8. Understand the features of the refrigerant oil.
 - 8.1 Outline the importance of refrigerant oil.
 - 8.2 Mention the classification of refrigerant oil.
 - 8.3 Mention the properties of a good refrigerant oil.
 - 8.3 Explain the properties of refrigerant oil.
 - 8.5 Mention the specification of refrigeration oil.
 - 8.6 Explain the causes of more use of nepthene base oils for refrigeration purpose.
 - 8.7 Explain the contains additives of oil.
 - 8.8 Name the different oils used with the HFC refrigerants.
 - 8.9 Mention the features of synthetic oil used in HFC refrigerant.
 - 8.10 Mention the precuation and safety measure in handling and storing of synthetic oil.
- Understand refrigerant recovery, recycling and reclaim.
 - 9.1 State the meaning of the terms refrigerant recovery, recycling and reclaim.
 - 9.2 Identify the various types of refrigerant recovery and recycling equipment.
 - 9.3 Describe the procedure of liquid refrigerant recovery.
 - 9.4 Describe the procedure of vapor refrigerant recovery.
 - 9.5 Mention the standard safety recommendation to be followed for removing refrigerant from system.
 - 9.6 State what is meant by retrofit.
 - 9.7 Describe the retrofit procedure of R-134a in R-12 system.
 - 9.8 State what is meant by drop-in refrigerant.
 - 9.9 Describe the use of drop-in refrigerant (HC blend in- R-12 unit)
 - 9.10 Compare retrofitting of R-12 system with 134a and HC blend.

Understand the features of heat pump. State what is meant by heat pump. 10.2 Mention the types of heat pump. Describe the operation of the different types of heat pump. 10.3 Distinguish between geothermal heat pumps, air source heat pumps and 10.4 solar heat pump. Describe the operation of the heat pump reversing valve in heating and cooling mode. 10.5 Describe the simultaneous cooling and heating applications of heat pump (heat pump cascade system). 10.7 Mention the industrial applications of heat pump. 10.8 Analyze the heat pump cycle. Mention the design criteria effecting the performance of heat pump. 10.9 10.10 Solve problems on heat pumps. 11. Understand the features of heat exchanger. 11.1 State the meaning of heat exchanger. 11.2 Outline the importance of heat exchangers. 11.3 Mention the types of heat exchangers. 11.4 Define mean temperature difference. 11.5 Describe the operation of different types of beat exchanger. 11.6 Describe the factors to be considered to design a heat exchanger. 11.7 Solve problems relating heat exchangers. 12. Understand the evaporative cooling system. 12.1 State what is meant by evaporative cooling systems. 12.2 Describe the different ice cooling systems. 12.3 Describe the thermodynamics of evaporative cooling. 12.4 Mention the types of evaporative cooler. 12.5 Describe the operation of different types of evaporative coolers. Describe the factors to be considered in selection and design of evaporative coolers. 12.6 Mention the limitation of simple evaporative cooling system. 12.7 12.8 Mention the applications of evaporative cooling. Practical: 1. Study the PH chart. 2. Solve problems of simple vapor compression cycle using PH chart. Solve problems of compound vapor compression cycle using PH chart. 3, 4. Build up a compound compression system. 5. Study the solar heat collection. Study the solar cooling system. 6. 7. Visit a solar energy project. 8. Refrigerant recovery at a unit. Recover refrigerant from a refrigeration system having burnt compressor motor. 9. 10, Recover refrigerant from a refrigerator using piercing valve and a recovery unit. Charge CFC refrigerant in to refrigerator without releasing any refrigerant. 11. Oil Charge in a refrigeration system. 12. 13. Study the Cascade Refrigeration system.

অধ্যায়-১ ঃ সরল বাস্প সংকোচন হিমায়ন পদ্ধতিতে

বিভিন্ন হিমায়কের প্রেসার এনখালপি চার্ট

٥.٤	ভূমিকা	১৭
2.2	প্রেসার এনথান্দপি এবং টেম্পারেচার এক্ট্রপি চার্ট	٩٤
٥.২	একটি আদর্শ প্রেসার এনধালপি এবং তাপমাত্রা এক্ট্রপি চার্ট অঙ্কন	አክ
ે .૭	প্রেসার এনথালপি এবং তাপমাত্রা এক্ট্রপি চার্টের বিভিন্ন লাইন ও জোনসমূহের বর্ণনা	২০
8,د	প্রেসার এনধালপি চার্টে সরল সম্পৃক্ত হিমায়ন চক্র	২৩
٥.٤	বাষ্প সংকোচন সাইকেলে রেফ্রিজারেন্টের বিভিন্ন মান প্রেসার এনখাঙ্গপি চার্টে বের করার নিয়ম	ર૯
১.৬	বিভিন্ন অবস্থানে এবং হিমায়কে P-H চার্টের মাধ্যমে সমস্যাবলি	৩১
	অনুশীলনী-১	
	৯ অতি সংক্ষিপ্ত প্রশ্নোত্তর	88
	৮ সংক্ষিপ্ত প্রশ্নোন্তর	8৬
	▶ রচনামূলক প্রশাবলি	84
	অধ্যায়–২ ঃ কম্পাউল্ড ভেপার কম্প্রেশন পদ্ধতি	
২.০	ভূমিকা	8ክ
2.5	কম্পাউড ভেপার কম্প্রেশন পদ্ধতি	8ክ
ર.૨	ইন্টারকুলার ব্যবহৃত কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতির সুবিধা	8ኤ
২.৩	ইন্টারকুলার ব্যবহৃত বিভিন্ন মান্টিস্টেজ বা কম্পাউভ ভেপার কম্প্রেশন পদ্ধতি	88
૨.8	লিকুইড ইন্টারকুলার ব্যবহৃত দুই ধাপে সংকোচন পদ্ধতির বর্ণনা	(0
ર.૯	ওয়াটার ইন্টারকুলার্ এবং লিকুইড সাব-কুলার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি	¢о

	F				
	\ 	২.৬	ওয়াটার ইন্টারকুদার, লিকুইড সাব-কুলার এবং লিকুইড ফ্লাশ		
			চেমার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি	ď	٠,
		২.৭		ď	
1. 1.1	١	২.৮		ď	
1	4		অনুশীলনী-২	· ·	`
	Ŋ				
P	!		৯ অতি সংক্ষিপ্ত প্রশ্নোন্তর	æ	৬
	1		⇒ সংক্ষিপ্ত প্রশ্নোতর	æ	٩
Z	<u> </u>		রচনাম্লক প্রশ্নাবলি	৬০	2
			অধ্যায়~৩ ঃ একাধিক ইভাশোরেটির ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি		
K	[]	9 ,0	ভূমিকা		
1		د.ه	একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতির গুরুত্	৬:	۱,
þ)	૭.২	একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভ্যাপার কম্প্রেশন পদ্ধতির প্রকারভেদ	৬১	,
		ಲ .ಲ	একই তাপমাত্রায় একটি কম্প্রেসর একটি এক্সপানশন ভাল্ভ এবং	৬১	, /
J	Y		একাধিক ইভাপোরেটর ব্যবহাত পদ্ধতি		
	1	9.8	বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভার্ল্ভ ও	৬২	1
B	X		ব্যাকপ্রেসার ভাল্ড এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি		
	₫,	o.&	বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাল্ভ ও	৬৩	
			ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি		^
þ	₫、	೨.৬	বিভিন্ন তাপ্যাত্তায় তিন তিন ক্রম্প্রেয়র একপ্রাত্তির ক্রম্প্রেয়র একপ্রাত্তির ক্রম্প্রেয়র একপ্রাত্তির ক্রম্প্রেয়র	<i>₽</i> 8	
	١,	5,9	বিভিন্ন তাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর এক্সপানশন ভাল্ড ও ইভাপোরেটর ব্যবহৃত পদ্ধতি বিভিন্ন তাপমাত্রায় একাধিক এক্সপানশন ভাল্ড ভিন্ন ভিন্ন কম্প্রেসর ও	৬৫	K
h			ইভাপোরেটর ব্যবহৃত পদ্ধতি		ľ
)	.	ე. ৮	বিভিন্ন তাপমাত্রায় একাধিক কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাল্ভ ভ	৬৬	K
Š į)
,		٠.৯	ইভাপোরেটর ও ফ্লাশ ইন্টারকুলার ব্যবহৃত পদ্ধতি	৬৭	K
Κ,	į		লো টেস্পারেচার রেফ্রিজারেশনে ক্যাসকেড সিস্টেমের বর্ণনা	৬৮)
1			খ্রি-স্টেজ ক্যাসকেড সিস্টেমের পরিকল্পিত ও পি-এইচ ডায়াগ্রাম বর্ণনা	۹۶	KĮ
	ĮŤ		সমস্যা সমাধান	૧૨) (
1	Ξ	$ \widetilde{z} $	<u> </u>		N

	8.0 8.3 8.3	সন্শালনী-৩ → অতি সংক্ষিপ্ত প্রশ্নোত্তর → সংক্ষিপ্ত প্রশ্নোত্তর → রচনামূলক প্রশ্নাবলি অধ্যায়-৪ ঃ সোলার হিটিং সিটেটম ভূমিকা সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ বিভিন্ন প্রকার সৌরতাপ সংগ্রহের কার্যপদ্ধতি	94 94 94 94 94
	8. \ 8.\	সংক্ষিপ্ত প্রশ্নোত্তর অধ্যায়−৪ ঃ সোলার হিটিং সিস্টেম ভূমিকা সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	9.4 9.4 9.4
	8. \ 8.\	সংক্ষিপ্ত প্রশ্নোত্তর অধ্যায়−৪ ঃ সোলার হিটিং সিস্টেম ভূমিকা সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	٩٠ ٩٠ ٩٠
	8. \ 8.\	অধ্যায়–৪ ঃ সোলার হিটিং সিঠেটম ভূমিকা সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	. q<
	8. \ 8.\	ভূমিকা সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	, de
	8. \ 8.\	সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	, d.
	8.૨	সোলার হিটিং পদ্ধতি সোলার হিটিং এর প্রকারভেদ	, d.
		সোলার হিটিং এর প্রকারভেদ	
	8.७	After water offense success and the	
	l	াবতের অবদার পোরতাশ সংযোগের কার্যসন্ধাত	. q
	8.8	সৌর হিটিং পদ্ধতির বর্ণনা	
)	8.0	লিকুইড/পানি টাইপ সোলার হিটিং পদ্ধতির বর্ণনা	ۍ(او
		অনশীলনী-৪	
			b~
\mathbf{A}_{i}^{N}			· ৮ '
ζ)		→ রচনামূলক প্রশ্নাবাল	৮ ১
		" অধ্যায়−৫ ঃ সোলার কুলিং সিচেটম	
(4. 0	জ্মিকা	br?
	۷.۵		b-1
	৫. ২		٠. مور
	e. 9		אַנּ
Ŋ	د.७.১		
Z			გი
1(86
			እ ለ
S d	4.5		94
		चनूनीलनी-⊄	
ľ		▶ অতি সংক্ষিপ্ত প্রশ্নোন্তর	৯০
$\llbracket \langle \! brack brack$			৯০
K			৯৮
		4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8.৫ লিক্ইড/পানি টাইপ সোলার হিটিং পদ্ধতির বর্ণনা অনুশীলনী-৪ > অতি সংক্ষিপ্ত প্রশ্নোন্তর > সংক্ষিপ্ত প্রশ্নোন্তর > সংক্ষিপ্ত প্রশ্নোন্তর অধ্যায়-ও ঃ সোলার কুলিং সিস্টেম ৫.০ ভূমিকা ৫.১ সোলার কুলিং পদ্ধতি ৫.২ সৌরশন্তি ব্যবহার করে বিভিন্ন প্রকার সৌর কুলিং পদ্ধতি ৫.২ বৌরশন্তি ব্যবহার করে বিভিন্ন প্রকার কর্ননা ৫.৩.১ বাম্প সংকোচন পদ্ধতি ৫.৪ সৌরশন্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবস্থার বর্ণনা ৫.৫ সৌরশন্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবস্থার বর্ণনা ৫.৫ সৌরশন্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবস্থার বর্ণনা ৫.৫ সৌরশন্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবস্থার বর্ণনা

. .

ŧ

,

\Box		
	অধ্যায়–৬ ঃ হিমায়ক	
৬.০	ভ্যিকা	કેલ
৬.১	একটি আদর্শ হিমায়কের ভৌত (Physical) গুণাবলি	র
৬.২	একটি আদর্শ হিমায়কের রাসায়নিক গুণাবলি	200
৬.৩	একটি আদর্শ হিমায়কের থার্মোডাইনামিক্স গুণাবলি	300
৬.৪	হিমায়কের শ্রেণিবিভাগ	200
৬.৫	হাইড্রোকার্বন হিমায়ক	300
৬.৬	বিভিন্ন প্রকার হিমায়কের বৈশিষ্ট্য/গুণাবলি	200
৬.৭	হিমায়ক নামকরণ	200
৬.৮	হিমায়কের ব্যবহার ক্ষেত্রসমূহ) 206
৬.৯	ঘনীভ্বন চাপ, বাষ্পীভূবন তাপমাত্রা, বয়লিং পয়েন্ট,	,
	ক্রিটিকেল তাপমাত্রা এবং S.P. আয়তন এর রেফ্রিজারেশন এর উপর প্রভাব ব্যাখ্যা কর	\$ 08
७.४०	বিভিন্ন ধরনের রেফ্রিজারেন্ট (হিমায়ক) সিলিভারের কালার কোড	٥٥٥
७. ১১	হিমায়ক ও হিমায়ক সিলিভার স্থানান্তর (Handling),	•
	সংব্রক্ষণ (Storage) ও নিরাপত্তা নিয়মাবলি	১০৮
৬.১২	রেফ্রিজারেন্ট সিশিন্ডার হন্তান্তর ও নিরাপন্তার বিধিবিধান	४०४
	অনুশীলনী-৬	, 0,,
	ৢপতি সংক্ষিপ্ত প্রশ্নোন্তর	४०४
	▶ সংক্ষিপ্ত প্রশ্নোত্তর	775
	▶ রচনামূলক প্রশ্লাবলি	४४७
	অধ্যায়-৭ ঃ ক্লোরোফ্লোরো কার্বন ও পরিবেশ বাষ্কব হিমায়ক	
۹.٥	ভূমিকা	٩۷۷
4.۶	ক্লোরোফারো কার্বন	229
૧.૨	পরিবেশ বান্ধব আধুনিক হিমায়ক	227
૧.૭	পরিবেশ বান্ধব/আধুনিক হিমায়কের তালিকা	227 227
A.8	ODS, ODP এবং GWP কী	
1.¢	ওজোন স্তর ক্ষয়, থীনহাউজ ইফেক্ট এবং গ্লোবাল ওয়ার্মিং	ንንዶ
	CFCs এর সাথে ওজোন (O3) এর রাসায়নিক বিক্রিয়া	772

)
	۹.۹		FC হিমায়ক ও নন CFC হিমায়কের ODP, GWP এর পরিমাণ এবং	ļ	
1			ায়ুমণ্ডলে হিমায়কের অন্তিত্ত্বের সময়ের তুলনা	77%	, I
X	۹.৮	7	নট্রিল প্রোটকল এবং ক্লিন এয়ার অ্যাষ্ট	১২০	2
1		•	অনুশালনী-৭)
Ĭ			⇒ অতি সংক্রিপ্ত প্রশ্লোত্তর	757	k I
1			▶ সংক্ষিপ্ত প্রশ্নোন্তর	১২২	Ì
Y			⇒ রচনান্দক প্রশ্লাবলি	১২ ৪	ľ
1			অধ্যায়–৮ ঃ রেফ্রিজারেন্ট অয়েল/কম্প্রেসর অয়েল		
וי	b .0		ভূমিকা	256	k
1	۷.۵		রেফ্রিক্সারেন্ট অয়েলের গুরুত্ব	ડ ૨૯	
	৮.২		রেফ্রিজারেন্ট অয়েশের প্রকারভেদ	১২৫	ĺ
(৮.৩		একটি ভাল রেফ্রিক্সারেন্ট অয়েলের গুণাবলি	১২৬	
)	b.8	}	রেফ্রিক্সারেন্ট অয়েলের গুণাবলির বর্ণনা	১২৬	ľ
(b.0	t	রেফ্রিজারেশন অয়েলের স্পেসিফিকেশন	১২৮	
)	b.\	.	রেফ্রিজারেশন ক্ষেত্রে ন্যাপথেন বেস অয়েল বেশি ব্যবহার করা হয় কেন	১২৮	
1	٦.٩	۹	তেলের বাড়তি উপদানগুলো ব্যাখ্যা কর	256	1
)	b.1	7	HFC রে ফ্রিক্সারেন্টে ব্যবহৃত বিভিন্ন জয়েলের নাম	১২৮	
ì	 ৮.	ð	HFC হিমায়কের সাথে ব্যবহৃত বিভিন্ন তেল এর নাম	১২৮	
ŀ	b.:	5 0	সিনপেটিক অয়েল স্থানান্তর এবং সংরক্ষণ করার জন্য নিরাপত্তা বিধান	255	ָם י
			অসুশীলনী-৮		
			⇒ অতি সংক্রিপ্ত প্রশ্নোন্তর	> 2	ð
5			৮ সংক্ষিপ্ত প্রশ্নোত্তর	70	0
	1		₩ রচনামৃলক প্রপ্লাবলি	20	ર
<			অধ্যায়–৯ ঃ রেফ্রিজারেন্ট রিকোডারী, রিসাইকেলিং এবং রিক্লেইম		
) s	0	ভূমিকা	১৩	ð
	ه ا		হিমায়ক পুনঃলাভ, পুনঃচক্রায়ন ও পুনরুদ্ধার করা বলতে কী বুঝায়	70	C
	. 1	 .સ	বিভিন্ন প্রকার হিমায়ক পুনঃলাভ এবং পুনঃ চক্রায়নের জন্য প্রয়োজনীয় যন্ত্রপাতি	24	X
1	"	• •			_

1				٠,
۱ ۱	۵.۵	লিকুইড হিমায়ক পুনঃলাভ পদ্ধতি	१७९	<i>!</i>
١	8.6	বাস্পীয় হিমায়ক পুনঃলাভ পদ্ধতি	১৩৮	Ň
(3.6	সিস্টেম থেকে হিমায়ক বের করার জন্য কী কী নিরাপন্তামূলক ব্যবস্থা গ্রহণ করতে হয়	\$89	1
1	৯.৬	রেট্রোফিট কী?	\$89	Kſ
1)	አ .ዓ	হিমায়ক R-12 এর পরিবর্তে হিমায়ক 134a চার্জ করার পদ্ধতি	\$8৮	M
(৯.৮	ড্রপ ইন রেফ্রিক্সারেন্ট	784	kf
)	જ. જ	হিমায়ক R-12 এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড (HC-blend) চার্জ করার পদ্ধতির বর্ণনা	7 87	
ì	٥٤.ه	R-12 সিস্টেমে R-134a এবং HC-blend হিমায়ক চার্জ করার তুলনামূলক পার্থক্য	አ8≽	
\		অনুশালনী-৯		
			\ \ \	
١		⇒ সংক্ষিত্ত প্রশ্লোত্তর	260	\setminus
•		⇒ রচনামৃলক প্রশ্লাবলি	\$08	1
(_		K
)		অধ্যায়−১০ ঃ হিট পাম্প		
(30.0	ভ্মিকা	১৫৫	K)
)	۷۰.۵	হিট পাম্প	১৫৬	N
1		হিট প্যম্পের প্রকারভেদ	১৫৬	
Ì		বিভিন্ন প্রকার হিট পাড়েপর বর্ণনা	১৫৬	Ù
1		ও এয়ার টু এয়ার হিট পাম্প	১৫৬	
1	i	২্ প্রয়াটার টু এয়ার হিট পাম্প	३৫१	N
)		৩ এয়ার টু প্রয়াটার হিট পাম্প	ንዕጉ	1
(\$0.0.	ও প্রয়াটার টু প্রয়াটার হিট পাম্প	ንዕጉ	1
١	٥.٥.٥٤	? এয়ার টু লিকুইড হিট পাম্প	ላው	
(8.04	Geothermal হিট পাম্প, Air source হিট পাম্প এবং Solar হিট পাম্প এর মধ্যে পার্থক্য	১৫৯	ki
Ì		হিট পাম্প রিভার্সিং ভালভের কুলিং ও হিটিং মোডসহ কার্যাবলির বর্ণনা	১৬০	Ì
		হিট পাদেশর ব্যবহার	১৬১	
Ì		হিট পাদেশর ব্যবহার ক্ষেত্র	১৬১	\setminus
1		হিট পাড়েশর সাইকেল বিশ্লেষণ	১৬২	1
1		হিট পাতেপর পারফরমেন্স	১৬৩	K
X	20.30	হিট পাম্প সম্পর্কিত সমস্যা সমাধান	<i>५</i> ७8	
П		<u> </u>		1

.

##X				1
	\prod	১২.৩ ইভাপোরেটিভ কুলিং এর তাপ গতিবিদ্যা	328	1
100	۱	১২.৪ ইভাপোরেটিভ কুলারের প্রকারভেদ	728	\
1))	১২.৫ বিভিন্ন প্রকার ইভাপোরেটিভ কুলারের কার্যাবলি	ኔ৮৫	1
1	(১২.৬ ইভাপোরেটিভ কুলার ডিজাইন ও নির্বাচনের জন্য বিবেচ্য বিষয়সমূহ	১৮৭	(
		১২.৭ ইভাপোরেটিভ কুলিং সিস্টেমের সীমাবদ্ধতা	ንኦ৮	
	1	১২.৭.১একটি ইনডাইরেষ্ট ইডাপোরেটিং সিস্টেমের কার্যাবলি	ንዾዾ	(
	N	১২.৮ ইভাপোরেটিভ কুলারের ব্যবহার	ንኮ৯	۱
	1	১২.৮.১ বাংপাদেশ ইভাপোরেটিভ এসির কার্যকারিতা	ን৮৯	K1
		১২.৮.২ ইভাপোরেটিভ এসির সুবিধাসমূহ	ን ዮ৯	
	4	১২.৮.২ ইভাপোরেটিভ এসির অসুবিধা	ኃ৮৯	4
	ľ	অনুশীলনী–১২		\
	4	⇒ অতি সংক্ষিপ্ত প্রশ্নোত্তর	১৯০	
100		⇒ সংক্ষিপ্ত প্রশোল্ডর	>%0	ľ
)	▶ রচনামূলক প্রশ্লাবলি	798)
}	(•	į.
K)	ব্যবহারিক :		
	1	পরীক্ষণ নং-১ ঃ পি-এইচ ডায়াগ্রাম পর্যবেক্ষণকরণ	ን৯৭	K
)	পরীক্ষণ নং-২ ৪ পি-এইচ ডায়াহাম ব্যবহার করে সরল বাষ্প		
	ĺ	সংকোচন পদ্ধতির সমস্যাবলি নির্ণয় প্রণালি	২ 00	k
	/	পরীক্ষণ নং-৩ ঃ যৌগিক বাষ্প সংকোচন হিমায়ন চত্তেন্র সমস্যাবলি পি-এইচ		
	Š	ডায়াঘামের মাধ্যমে সমাধানকরণ	২০১	ľ
		পরীক্ষণ নং-৪ ঃ একটি যৌগিক সংকোচন পদ্ধতি তৈরিকরণ	২০৩	1
4	!	পরীক্ষণ নং-৫ ঃ সৌরতাপ সংগ্রহ পর্যবেক্ষণ করণ	২০৪	1
	(পরীক্ষণ নং-৬ ঃ সোলার কুলিং পদ্ধতি পর্যবেক্ষণকরণ	२०४	K
))	পরীক্ষণ নং-৭ ঃ ইউনিটের মাধ্যমে হিমায়ক স্থানান্তর প্রণালি	২০৬	1
1	1	পরীক্ষণ নং-৮ ঃ একটি হিমায়ন পদ্ধতির তৈলচার্জকরণ	২০৮	K
)	ফ সুপার সাজেশনস্২০৯	২২৮)
1		প্ত বাকাশিবো প্রশ্নাবদি ২২৯	- Sika	k
	,	ळ पाप्पानस्या श्रह्मायाच	498	1
1	Γ.΄			ľ

সরল বাষ্প সংক্রোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনবাদপি চার্ট

সরব বাল সংকোচন হিন্নার পছনিত বিভিন্ন হিনারকের সেরার নব্যালাপ চাচ ক্র নির্দ্ধিন বিশার বিশার বিশার নির্দ্ধিন বিশার জানতে হবে।

খাড়া বা ভার্টিক্যাল অক্ষকে চাপ (Pressure) এবং আনুভূমিক বা সমতল বা হরিজন্টাল অক্ষকে এনথালপি (Enthalpy) বা তাপ (Heat) ধরে P-H ডায়াঘাম এবং T-S ডায়াঘাম-উল্লম্ব অক্ষকে তাপমাত্রা (Temperature) এবং আনুস্তমিক অক্ষরেখা বরাবর এক্টুপি (Entropy) ধরে T-S ডায়াগ্রাম গঠন করা হয়। সাধারণ বা সরল বাষ্প সংকোচন হিমায়ন পদ্ধতিতে P-H এবং T-S ডায়াগ্রামের লাইন, জোন, বিভিন্ন ধরনের মান (Different value) সম্পর্কে জ্ঞাত হওয়া যাবে ৷

যদিও আকারে ছোট হওয়া বা সীমাবদ্ধতার কারণে তাপগতীয় টেবিলের ন্যায় সৃক্ষভাবে হিমায়কের বিভিন্ন তাপগতীয় গুণাবলির উপাত্তগুলো পাওয়া সম্ভব হয় না। কিন্তু P-H এবং T-S ডায়াহামের মাধ্যমে বিভিন্ন অবস্থায় হিমায়কের তাপগতীয় গুণাবলির মানগুলো সহজে নির্ণয় করা যায় এবং সরপ বাষ্প সংকোচন (Simple vapour compression refrigeration system) হিমায়ন পদ্ধতির চক্রগুলো বিশ্লেষণ করার জন্য P-H এবং T-S ডায়াগ্রামের মাধ্যমে সহজে উপস্থাপন করা সম্ভব ।

১.১ প্রেসার এনথাগপি এবং টেস্পারেচার এন্ট্রপি চার্ট (State what is meant by P-H & T-S diagram) 8

বাষ্প সংকোচন বা ভেপার কম্প্রেশন পদ্ধতির হিমায়ন চক্র বিশদভাবে অধ্যয়ন ও বিশ্লেষণ করার জন্য প্রতিটি হিমায়কের জন্য পৃথকভাবে প্রস্তুত হিমায়ন চক্রের সংকোচন, ঘনীভবন, সম্প্রসারণ ও বাষ্পায়ন প্রক্রিয়ায় চাপ ও তাপীয় যে সমস্ত থার্মোডাইনামিক্স পরিবর্তন ঘটে তা একটি চার্টে বিভিন্ন রেখার মাধমে সন্নিবেশিত করা হয়। উজ্ঞ চার্ট বা রেখাচিত্রকে প্রেসার এনথালপি চার্ট বলা হয়।

প্রেসার এনথালপি ডায়াহ্মাম (P-H) এবং টেম্পারেচার এন্ট্রপি ডায়াহ্মাম বলতে প্রাথমিকভাবে জানি-

প্রেসার এনখালপি ভায়ামাম (Pressure-enthalpy diagram বা P-H) ঃ খাড়া বা উল্লম্ব বা ভার্টিক্যাল অক্ষকে চাপ (Pressure) এবং সমতল বা আনুভূমিক বা হরিজন্টাল অক্ষকে এনথালপি বা তাপ ধরে বিভিন্ন কার্ডের মাধ্যমে গঠিত যে লেখচিত্রের মাধ্যমে বিভিন্ন অবস্থায় বা বিভিন্ন ফেজে হিমায়কের তাপগতীয় গুণাবলিগুলো সৃষ্ণভাবে পড়া যায় এবং হিমায়ন যন্ত্রের কার্যকারিতা বা (Performance) তুলনা করা যায় তাকে P-H ডায়াগ্রাম বা প্রেসার এনথালপি ডায়াগ্রাম (Pressure enthalpy-diagram) বলে। 'এক্টপি' (Entropy) শব্দটির আক্ষরিক অর্থ রূপান্তর (Transformation)। সর্বপ্রথম ক্লসিয়াস (Claussious) এক্টপি বিষয়ক ধারণাটি উপস্থাপন করেন, বর্তমানে যাকে 'S' দ্বারা প্রকাশ করা হয়।

আমরা জানি, সমোক্ষ পদ্ধতিতে (Constant Temperature Process) বা স্থির তাপমাত্রা অবস্থায় কার্যনির্বাহক বস্তু (Working Substance) বা গ্যাসের তাপমাত্রার কোন পরিবর্তন হয় না। কিন্তু উহাকে প্রসারিত (Expension) বা সংনমিত করলে উহার চাপ ও আয়তন (Pressure & Volume) পরিবর্তিত হয়। অনুরূপভাবে অ্যাভিয়াবেটিক (adiabatic) বা রুদ্ধতাপ প্রক্রিয়ায় কার্যনির্বাহক বস্তুকে সংনমিত বা প্রসারিত বা এক্সপানশন করলে উহার তাপ ও তাপমাত্রা (Heat & Temperature) উভয়ই পরিবর্তিত হয়। তাপগতি বিজ্ঞানের ২য় সূত্রের (2nd Law) বিশ্লেষণ ও প্রয়োগের প্রস্তাবনা করতে গিয়ে ক্লসিয়াস অনুভব করেন যে রুদ্ধতাপ প্রক্রিয়ায় নিক্যাই কার্যনির্বাহক বস্তুর তাপীয় কোন ধর্ম অপরিবর্তিত থাকে। তিনি এই তাপীয় ধর্মের নাম দেন এক্ট্রপি (Entropy)। এক্ট্রপি কার্যনির্বাহক বন্তুতে তাপ প্রয়োগ করলে বাড়ে বা বৃদ্ধি পায় এবং তাপ অপসারিত করলে কমে বাঞ্ছাস পায়। সূতরাং কার্যনির্বাহক বম্ভর (Working Substance) এক্ট্রপি বলতে আমরা এমন এক তাপীয় প্রাকৃতিক রাশিকে বুঝি, মা বম্ভর রুদ্ধতাপ (adiabatic) প্রক্রিয়ার সময় সর্বদা স্থির থাকে এবং বস্তুতে তাপ প্রয়োগ করলে বাড়ে এবং তাপ অপসারিত করলে কমে। অল্প তাপমাত্রা পরিসরে. এট্রপি (Entropy) বৃদ্ধি বা হ্রাসের পরিমাণকে পরম তাপমাত্রা (Absolute temperature) দ্বারা তণ করলে কার্যনির্বাহক বস্তু কর্তৃক গৃহীত বা বর্জিত তাপের পরিমাণ পাওয়া যায়।

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং–৩

ফুঁ বাস্প সংকোচন হিমায়ন পদ্ধতিতে ভিন্ন হিমায়কের প্রেসার এনধালপি চার্ট

যদি $T^{\circ}K$ স্থির পরম তাপমাত্রায় কোন প্রবাহীর কিছু সময় ব্যবধানে dQ পরিমাণ তাপ গ্রহণ করে। যদি dS ঐ সময়ের এন্ট্রপি পরিবর্তন নির্দেশ করে তবে, $dS=rac{dQ}{T}$ বা dQ=T.dS

এখানে, dQ = কার্য নির্নাহক বন্ধ কর্তৃক গৃহীত বা বর্জিত তাপ Kcal.

T= বস্তুটির পরম তাপমাত্রা, ${}^{\circ}K$

dS = এক্ট্রপির হ্রাস বা বৃদ্ধি :

কার্যনির্বাহক বস্তুর অন্তর্নিহিত এক্ট্রপি পরিমাপ করা যায় না, তবে তাত্ত্বিকভাবে পরমশূন্য (Absolute Zero) তাপমাঝায় কার্যনির্বাহক বস্তুর এক্ট্রপি শূন্য হয়। বিজ্ঞানী ও প্রকৌশলীগণেরা রুদ্ধতাপ প্রক্রিয়ার সমস্যা সমাধানে এক্ট্রপির এ ধারণা (Concept) কে ব্যবহার করেন।

এন্ট্রপির একক (Unit of Entropy) হল $Kcal/{}^oK$ । যেহেতু এন্ট্রপির সংজ্ঞা হতে পাই $dS=\frac{dQ}{T}$.

অর্থাৎ এন্ট্রপির পরিবর্তন = বস্তু কর্তৃক গৃহীত বা বর্জিত তাপ পরম তাপমাত্রা

$$\therefore dS = \frac{Kcal}{\circ K}$$

 \therefore dS = Kcal/°K

অনেক সময় এই এন্ট্রপিকে কার্যনির্বাহক বস্তুর একক ভরের মাধ্যমে প্রকাশ করা হয়। আপেক্ষিক এন্ট্রপির একক হল Kcal/kg°K। অনেক সময় আবার এন্ট্রপির সুনির্দিষ্ট একক না লিখে সংখ্যার শেষে তথুমাত্র একক এন্ট্রপি বা Unit of entropy ছারা প্রকাশ করা হয়।

P-H ভায়াগ্রাম বুঝতে হলে নিম্নোক্ত টার্ম (term) বা শব্দগুলো সম্বন্ধে অবগত হতে হবে !

- 🕽 । সম্পৃক্ত তাপমাত্রী (Saturation temperature)
- ২। সম্পুক্ত চাপ (Saturation pressure)
- ৩। সম্পৃক্ত তরল (Saturation liquid)
- 8। সম্পৃক্ত বাষ্প (Saturation vapor)
- 🕻। অর্থ-শীতল তরল (Sub-cooled liquid)
- ৬। অতি উত্তপ্ত বাষ্প (Superheated vapor)
- ৭। সম্পৃক্ত তরল এবং সম্পৃক্ত বাষ্প রেখা বা কার্ভ (Saturation liquid and saturation steam curve)
- ৮ ৷ সংকট বিন্দু (Critical point)
- ১। সংকট তাপমাত্রা (Critical temperature)
- ১০ ৷ সংকট চাপ (Critical pressure)
- ১১। সংকট আয়তন (Critical volume)
- ১। সম্পৃক্ত তাপমাত্রা (Saturation temperature) ঃ কঠিন পদার্থের তরলায়ন, তরলায়নের বাম্পায়ন এবং বাম্পের ঘনীভবন তাপমাত্রাকে উহার সম্পৃক্ত তাপমাত্রা (Saturation temperature) বলে।
- ২। সম্পৃত চাপ (Saturation pressure) ই নির্দিষ্ট তাপমাত্রায় যে চাপে তরল বাস্পে পরিণত হয় অথবা বাস্প তরলে পরিণত হয়, তাকে সম্পৃত চাপ বলে।
- ত। সম্পৃক্ত তরল (Saturation liquid) ই কোন তরলের তাপমাত্রা ক্রমান্বরে বৃদ্ধি করতে করতে এমন এক মাত্রায় আসে যে উহার পর আর অতিরিক্ত তাপ প্রয়োগ করলে ঐ তরলের কিয়দংশ বাস্পীভূত হতে তরু করে। তখন ঐ তরলকে সম্পৃক্ত তরল (Saturation liquid) বলে। ঐ অবস্থায় তরলের তাপমাত্রাকে সম্পৃক্ত তাপমাত্রা বলে।
- 8। সম্পৃক্ত বাষ্পা (Saturation vapor) ঃ সম্পৃক্ত বাষ্পে যখন তরলের কোন রেশ না থাকে তাকে সম্পৃক্ত বাষ্পা (Saturation vapor) বলে।
- ৫। **অর্ধ-শীতল তরল (Sub-cooled liquid) ই** যদি কোন তরলের তাপমাত্রা (Temperature) তার সম্পৃক্ত তাপমাত্রার নিচে থাকে তবে তরল পদার্থের ঐ অবস্থাকে অর্ধ-শীতল (Sub-cooled liquid) তরল বলে।
- **৬। অর্দ্রে সম্পৃক্ত বাষ্প্র (Wet saturated vapor) ঃ** সম্পৃক্ত বাষ্প্রে তরলের রেশ থাকলে তাকে আর্দ্র সম্পৃক্ত বাষ্প্র (Wet saturated vapor) বঙ্গে।

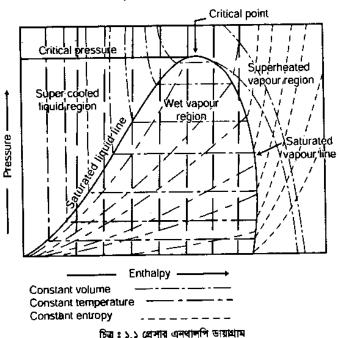
বৈ অতি উত্তর বাস্প (Superheated vapor) ঃ কোন বাস্পের তাপমাত্রা (Temperature) তার সম্পৃক্ত তাপমাত্রার উর্বের্থ পাকলে তাকে সুপার হিটেড বাস্প বা অতি উত্তর বাস্প (Superheated vapor) বলে।

৮। সংকট বিন্দু (Critical point) ই লেখচিত্রের চূড়ার দিকে সম্পৃক্ত তরল রেখা এবং সম্পৃক্ত বাল্প রেখা যে বিন্দুতে মিলিত বিষ্
 হয়, তাকে সংকট বিন্দু (Critical point) বলে। অর্থাৎ নির্দিষ্ট কোনো ডেটাম থেকে ক্রমণ চাপ প্রয়োগে কোনো তরল বা হিমায়কের শ্রী
বাল্পায়ন ঘটিয়ে (Phase change) বাল্পায়ন আরম্ভ বিন্দু এবং বাল্পায়ন শেষের বিন্দৃতলো P-H (চাপ-এনধালপি) অথবা P-V (চাপ-প্র
 আয়তন) অথবা T-S (তাপমাত্রা-এক্রিপি) লেখচিত্রে পুট করে মান বসিয়ে বাল্প আরম্ভের বিন্দৃতলো যোগ করলে সম্পৃক্ত তরল রেখা প্র
 এবং বাল্পায়ন শেষের বিন্দৃতলো যোগ করলে সম্পৃক্ত বাল্প রেখা পাওয়া যায়।

এবং বাস্পায়ন শেষের বিন্দৃগুলো যোগ করলে সম্পৃক্ত বাস্প রেখা পাওয়া যায়।

৯। সংকট তাপমাত্রা (Critical temperature) ঃ সংকট বিন্দৃতে প্রবাহী বা ফুইডির তাপমাত্রাকে সংকট তাপমাত্রা (Critical क विकास का भागित সংকট তাপমাত্রা $T_C = 647.3^{\circ}K$ ।

30। সংকট চাপ (Critical pressure) 3 সংকট বিন্দৃতে প্রবাহীর (Fluid) চাপকে সংকট চাপ (Critical pressure) বলে। ব্রুপেনির সংকট চাপ $P_c = 221.2 \text{ bar}$ বা 225 kg/cm^2 । অন্যভাবে বলা যেতে পারে— কোন গ্যাসের সংকট তাপমাত্রায় যে চাপ প্রয়োগ করে একে তরলে পরিণত করা হয় তাকে ঐ গ্যাসের সংকট চাপ বলে।


 ho_c । সংকট আয়তন (Critical volume) ho_c সংকট তাপমাত্রা এবং সংকট চাপে একক ভরের প্রবাহীর আয়তনকে সংকট আয়তন (Critical volume) বলে । যেমন— পানির সংকট আয়তন $V_c=0.00317~m^3/kg$ কার্বন ডাই-অক্সাইডের সংকট আয়তন $V_c=2.17~cm^3/gm$.

১২। সম্পৃত্ত বাস্প কার্ত (Saturation vapor curve) \$ P-H (চাপ-এনখালপি) বা অনুরূপ অন্য কোন লেখচিত্রে যে রেখা তরল বাস্পের মিশ্রণকে অতি উত্তপ্ত বাস্প থেকে পৃথক করে, তাকে সম্পৃত্ত বাস্প কার্ত বলে।

১৩। সম্পৃক্ত তরল রেখা (Saturated liquid line) ই কোন তরল বা হিমায়কের বিভিন্ন চাপে বাস্পায়ন ঘটিয়ে বাস্পায়ন আরম্ভ বিন্দু এবং বাস্পায়নের শেষের বিন্দৃতলো P-V অথবা P-H লেখচিত্রে প্লট করে বাস্পায়ন তরুর বিন্দৃতলো যোগ করে দিলে যে বক্র রেখা বা কার্ড পাওয়া যায়, তাকে সম্পৃক্ত তরল রেখা (Saturated liquid line) বলে।

১৪। সম্পৃক্ত বাস্প রেখা বা কার্ত (Staturation steam curve) ঃ বাস্পায়ন শেষের বিন্দৃগুলো যোগ করে যে রেখা পাওয়া যায় তাকে সম্পৃক্ত বাস্প রেখা বা কার্ড বলে।

১.২ একটি আনর্শ শ্রেসার এনথালপি এবং ভাগমূত্রা এন্ট্রপি চার্ট অঞ্চন (Draw a typical P-H. & T-S diagram) \$

২০

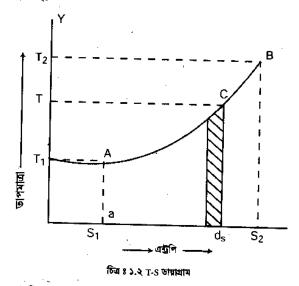
P-H ডায়াগ্রাম বা প্রেসার এনথাঙ্গপি ডায়াগ্রামে বাম প্রান্তের ও ডান প্রান্তের উল্লম্ব রেখা থেকে রেফ্রিজারেন্ট বা হিমায়কের (Refrigerant) চাপ (Pressure) সরাসরি পাওয়া যায়। উপরের ও নীচের অনুভূমিক বা হরিজন্টাল রেখা থেকে প্রতি কেজি (1 kg)

্রিট্রি ব্রিফোরেন্টের এনথালপির মান (enthalpy) সরাসরি পাওয়া যায়।

P-H ডায়াগ্রাম প্রধানত ৩টি অঞ্চল নিয়ে গঠিত হয়। যথা—

ত্র বির্দ্ধি সালি তিন্তে বাস্পার হিটেড অঞ্চল (Superheated region)

হ । অতি উত্তে বা সুপার হিটেড অঞ্চল (Superheated region)

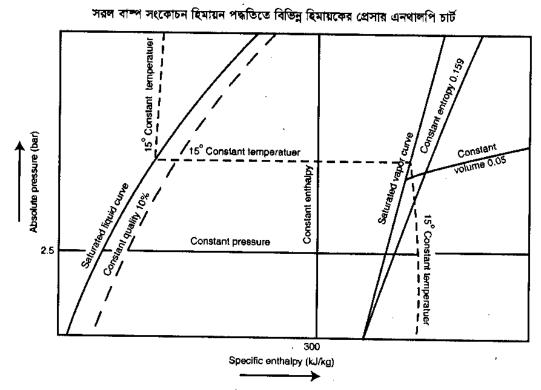

হ । অর্ধ-শীতল অঞ্চল (Sub-cooled region)

ত । ফেজ পরিবর্তনের অঞ্চল (Region of phase change)

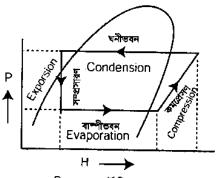
উপরোক্ত চিত্রা হতে দেখা যায় যে, সম্পৃক্ত তরল রেখা এবং সম্পৃক্ত বাম্প রেখা পরম্পারকে পৃথক করেছে। সম্পৃক্ত তরল রেখার বির্দ্ধি বাম পাশের অঞ্চলকে অর্ধ-শীতল বা সাবকুন্ত অঞ্চল বলে। এ অঞ্চলে হিমায়ক তরল অবস্থায় সম্পৃক্ত তাপমান্রার চেয়ে শীতল থাকে।

বি অপর দিকে সম্পৃক্ত বাম্প রেখার বা সুপার হিটেড লাইনের ডান দিকের অঞ্চলকে অতি উত্তও অঞ্চল বলে। এ অঞ্চলে রেফিজারেন্ট অতি উত্তপ্ত বাষ্প অবস্থায় থাকে। সম্পৃক্ত তরল রেখা ও সম্পৃক্ত বাষ্প রেখার মধ্যবর্তী অঞ্চলের যে কোন বিন্দৃতে হিমায়কের তরল এবং বাষ্প ফেজের পরিবর্তন এ অঞ্চলের মাধ্যমে উপস্থাপন করা হয় বলে একে ফেজ পরিবর্তন অঞ্চল (Region of phase change) বলে। কোন নির্দিষ্ট চাপের বা ছির চাপের (CP) সাপেক্ষে সম্পৃক্ত তরল রেখা থেকে ডান দিকের সম্পৃক্ত বাষ্প রেখা পর্যন্ত হিমায়কের বাষ্পীভবনের সুপ্ততাপ বা Latent heat নির্দেশ করে এবং সম্পৃক্ত বাষ্প রেখা থেকে বাঁ দিকের সম্পৃক্ত তরল রেখা পর্যন্ত হিমায়কের ঘনীভবনের সুপ্ততাপ নির্দেশ করে।

T-S বা তাপমাত্রা এক্ট্রপি ডায়াগ্রাম হতে—



T-S ডায়াগ্রাম X-অক্ষ বরাবর এক্ট্রপি এবং Y-অক্ষ বরাবর পরম তাপমাত্রা প্রকাশ করে যা উপরের চিত্রে দেখানো হয়েছে।

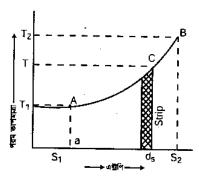

১.৩ প্রেসার এনথাঙ্গপি এবং তাপমাত্রা এক্ট্রপি চার্টের বিভিন্ন গাইন ও জোনসমূহের বর্ণনা (Describe the different line and zons of P-H & T-S diagram) 8

চিত্র ১.৩ এ একটি আদর্শ প্রেসার এনথাঙ্গপি চার্টে সম্পৃক্ত তরল রেখা (Saturated liquid line) এবং সম্পৃক্ত বাষ্প রেখা (Saturated vapor line) পরস্পর ক্রিটিক্যাল পয়েন্টে মিলিত হয়েছে। সংস্পৃক্ত তরলের তাপমাত্রা হল সম্পৃক্ত চাপে এটির তাপমাত্রা। সংস্পৃক্ত তরল রেখার বাম পাশের অঞ্চল সাব-কুল্ড (Sub-cooled) ডেপার জোন লিকুইড ও বাষ্প রেখার মধ্যবর্তী অঞ্চল ওয়েট ডেপার জোন এবং সম্পৃক্ত বাষ্প রেখার ডান পাশের অঞ্চল সুপারহিটেড ভ্যাপার জোন নিয়ে গঠিত।

প্রেসার এনথালপি চার্ট অসংখ্য রেখা ও কিছু অঞ্চল নিয়ে গঠিত। সকল রেখা সম্বলিত একটি চার্টের দিকে তাকালে বুঝতে একটু কট্ট হতে পারে, তাই বেশ কয়েকটি খণ্ড চিত্রের মাধ্যমে এ চার্ট বা ডায়াগ্রাম বুঝা চেষ্টা করা যায়।

ি চিত্র ঃ ১.৩ প্রেসার এনবাঙ্গপি চার্টের বিভিন্ন রেখার পরিচিতি

চিত্র ঃ ১.৪ চার্টে হিমায়ন চক্র


P-H ডায়াগ্রামের উপরের এবং নিচের আনুভূমিক রেখা অর্থাৎ এনথালপি (H) স্কেল হতে প্রতি কেজি হিমায়কের সুগুতাপের মান পাওয়া যাবে। P-H ডায়াগ্রাম বা চার্ট হতে হিমায়কের তরল থেকে বালেপ রূপান্তর, ক্রমান্বয়ে ডান দিকে এবং বাল্প থেকে তরলে রূপান্তর, ক্রমান্বয়ে বাম দিকে সংঘটিত হয়।

তরল ও বাস্পের মিশ্রণের ভিতরে সম্পৃত তরল রেখার কাছাকাছি বিন্দুতে তরলের পরিমাণ বেশি এবং সম্পৃত বাস্প রেখার কাছাকাছি বিন্দুতে বাস্পের পরিমাণ বেশি থাকে। সম্পৃত তরল রেখা ও বাস্প রেখার প্রায় সমান্তরালে উপর হতে নিচ পর্যন্ত সম্প্রসারিত দশটি রেখা দিয়ে বাস্পের শতকরা (%) হার নির্দেশ করে। এই রেখাগুলোকে কনস্ট্যান্ট কোয়ালিটি লাইন বলে, যা চিত্রে দেখানো হয়েছে।

এক রেখা হতে অন্য রেখা ১০% বাস্প বৃদ্ধি বা ব্রাস নির্দেশ করে। সম্পৃক্ত তরল রেখার নিকটে কনস্ট্যান্ট কোয়ালিটি রেখা ১০% বাস্প এবং ৯০% তরল নির্দেশ করে। P-H চার্টের ভিতরে সম্প্রসারিত আনুভূমিক রেখাগুলোকে সমচাপ (Constant pressure) এবং উল্লাঘ রেখাগুলোকে সম-এনথালপি রেখা বলে। অর্ধ-শীতল অঞ্চলে সমোক্ত রেখাগুলো উল্লাঘ অর্থাৎ সম-এনথালপি রেখার সমান্তরালে থাকে।

সম্পৃক্ত তরল রেখা হতে সমোষ্ণ রেখা দিক পরিবর্তন করে।

সরল বাষ্প সংকোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনধালপি চার্ট T-S ভাষামাম হতে ঃ

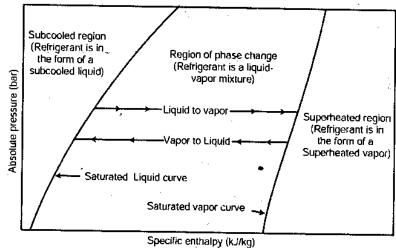
চিত্র ৪ ১.৫ T-S ভায়াগ্রাম।

উপরের T-S চিত্র বা ডায়াগ্রাম হতে মনে করি, কোন কার্যনির্বাহক বস্তুতে (Working Substance) তাপ প্রয়োগ এর ফলে উহা A অবস্থান হতে B অবস্থানে পৌহায়। এখন AB বক্ররেখার উপর যে কোন বিন্দু C কল্পনা করি। ধরি A বিন্দুতে পরম তাপমাত্রা T°K এবং এই অবস্থানে বস্তুটিতে সামান্য পরিমাণ dQ তাপ প্রয়োগের ফলে উহার এন্ট্রপি (S) dS পরিমাণ বেড়েছে। এক্ষেত্রে এন্ট্রপির সংজ্ঞানুযায়ী আমরা পাই-

প্রয়োগকৃত তাপ = পরম তাপমাত্রা × এক্ট্রপি বৃদ্ধি

অর্থাৎ dQ = T. dS

এখানে dS কে সৃক্ষভাবে টানা রেখাযুক্ত খাড়া স্ট্রিপ (Strip) এর সাহায্যে দেখানো হয়েছে।

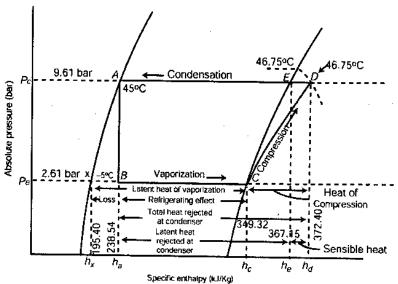

সূতরাং AB বক্ররেখার নিচের ক্ষেত্রফল = ক্ষেত্রফল AB ba.

$$= \int T. dS$$

 $= \int dQ \quad [\ \because T. dS = dQ \]$
 $= মোট প্রয়োগকৃত তাপ ।$

A ও B অবস্থানের লিমিট প্রয়োগ করে ইন্টিমেট করলে আমরা পাই,

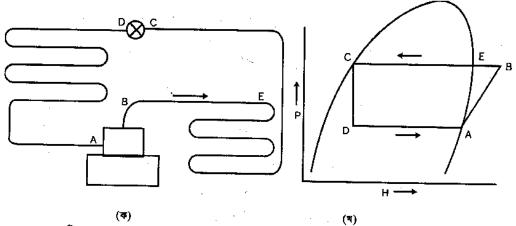
$$\int_{S_1}^{S_2} dS = \int_{T_1}^{T_2} \frac{dQ}{T}$$


 $S_2-S_1=\int\limits_{T_1}^{T_2} rac{dQ}{T}$ এটাই হল তাপ ও এন্ট্রপির মধ্যে সম্পর্কযুক্ত সমীকরণ।

চিত্র ঃ ১.৬ প্রেসার এনখাদপি ডায়াগ্রামে বিভিন্ন এলাকা

'বাষ্প সংকোচন হিমায়ন পদ্ধতিতে { হিমায়কের প্রেসার এনথাবলি চার্ট

১.৪ প্রেসার এনথাশপি চার্টে সরল সম্পৃক্ত হিমায়ন চক্র (Represent vapor compression cycle on P-H diagram at different condition) 8

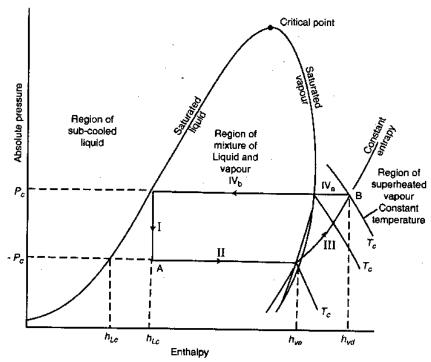


চিত্র ঃ ১.৭ সরল হিমায়ন চক্রেন্র প্রেসার এনাথাদ্পি ভায়াগ্রাম

বাস্প সংকোচন পদ্ধতির হিমায়ন চক্রের কমপ্রেসরে যদি সম্পৃক্ত বাস্প এবং প্রবাহ নিয়ন্ত্রকে সম্পৃক্ত তরল প্রবেশ করে তাহলে এ ধরনের হিমায়ন চক্রকে সরল সম্পৃক্ত হিমায়ন চক্র বলে। হিমায়ন চক্রের প্রেসার এনথালপি ভায়াগ্রাম অন্ধন করা হলে বাম্পায়ন প্রক্রিয়ায় (Evaporation) লাইনটি সম্পৃক্ত বাম্প কার্ত (Saturated vapor curve) স্পর্শ করে। তার পরে শুরু হয় সংকোচন প্রক্রিয়া। আবার ঘনীভবন প্রক্রিয়া (Condensation process) লাইন সম্পৃক্ত ভরল কার্ডের C পর্যন্ত সীমিত থাকে। বাম্পায়ন শেষ হওয়ার পর যদি হিমায়ক কমপ্রেসরে সম্পৃক্ত বাস্পের পরিবর্তে উত্তপ্ত বাষ্প (Superheated vapor) প্রবেশ করে তাহলে P-H চার্টে বাষ্পায়ন প্রক্রিয়ায় লাইন সম্পৃক্ত বাস্প কার্ড অতিক্রম করে উত্তপ্ত অঞ্চলে কিছুটা অবস্থান নেয়, আবার সম্পৃক্ত তরল যদি পুনঃ ঠাণ্ডা করা হয় (রিসিভার বা হিট এক্সচেক্সারের মাধ্যমে) তাহলে ঘনীভবন লাইন সম্পৃক্ত তরল কার্ভ অতিক্রম করে কিছুটা অবশীতল তরল অঞ্চলে অবস্থান নেয়, যাকে সাবকুন্ড দিকুইড সাইক্ল (Subcooled liquid cycle) বলে।

বাস্প সংকোচন পদ্ধতির সরল সম্পৃক্ত হিমায়ন চক্র মূলত প্রধান চারটি অংশে চারটি থার্মোডিনামিক্স প্রক্রিয়ায় সম্পন্ন হয়—

- সংকোচন প্রক্রিয়া (Compression process)। ৩। সম্প্রসারণ প্রক্রিয়া (Expansion process)।
- ২। ঘনীভবন প্রক্রিয়া (Condensation process)।
 - 8। বাস্পায়ন প্রক্রিয়া (Evaporation process)।



চিত্র ঃ ১.৮ (ক) সরল সম্পৃক্ত হিমায়ন চক্র

(ব) সরল সম্পুক্ত হিমায়ন চত্রেনর P-H ভায়াগ্রাম

প্রক্রিয়া ঃ DA ইভাপোরেটরে বাম্পায়ন; AB কমপ্রেসরে সংকোচন; BC কন্ডেন্সারে ঘনীভবন; CD প্রবাহ নিয়ন্ত্রকে সম্প্রসারণ :

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

চিত্র ৪ ১.৯ বিভিন্ন অঞ্চলসহ সরল সম্পৃক্ত হিমায়ন চক্র

- (ক) বাস্পায়ন প্রক্রিয়া (Evaporation process) ঃ ইভাপোরেটরে তরল হিমায়ক দ্রুব চাপে বাস্পীভূত হয়। প্রেসার এনখালপি ভায়াঘামে এ সম্প্রসারণ ১ বিন্দু থেকে ২ বিন্দু পর্যন্ত নির্দেশ করে। ইভাপোরেটরে তরল হিমায়ক বাস্পীভূত হওয়ার সময় আশপাশ থেকে প্রচুর তাপ গ্রহণ করে, ফলে এনখালপি বৃদ্ধি পায়। সম্পূর্ণ বাস্পীয় অবস্থায় সম্পৃত্ত বাস্প কমপ্রেসরে প্রবেশ করে।
- (খ) সম্প্রসারণ শ্রক্তিয়া (Expansion process) ঃ বাষ্প সংকোচন পদ্ধতির সরঙ্গ সম্পৃত্ত হিমায়ন চক্রের এক্সপানশন ভাগতে সম্পৃত্ত তরন্ধ প্রবেশ করে ঘনীভবন শেষ হওয়ার পর ৪ বিন্দু হতে সম্প্রসারণ গুরু হয়। এ সম্প্রসারণ ঘনীভবন চাপ থেকে সরাসরি নিচের দিকে বাষ্পীভবন চাপ ১ বিন্দু পর্যন্ত চলতে থাকে। সম্প্রসারণের সময় হিমায়ক তাপ গ্রহণ বা বর্জন করে না। প্রসারণকালে হিমায়কের কোন এনথালপির পরিবর্তন ঘটে না বিধায় এ প্রক্রিয়াকে অ্যাডিয়াবেটিক সম্প্রসারণ (Adiabatic expansion) বলে। স্তরাং সম্প্রসারণ লাইনটি ঘনীভবন চাপ থেকে সোজা ধ্রুব এনথালপি অনুসরণ করে বাষ্পীভবন চাপের সাথে মিলিত হয়।
- (গ) ঘনীভবন প্রক্রিয়া (Condensation process) ই কভেঙ্গারে ধ্রুব চাপে বাষ্পীয় হিমায়ক ঘনীভূত হয়ে কমপ্রেসর থেকে নির্গত উচ্চ চাপের উত্তপ্ত বাষ্পীয় হিমায়ক কভেঙ্গারে ৩ বিন্দৃতে প্রবেশ করে। ঘনীভবন ধ্রুব চাপে সংঘটিত হয় বিধায় এ প্রক্রিয়াকে P-H চার্টে ধ্রুব চাপের রেখা বরাবর ৩–৪ অন্ধন করা হয়।
- (ष) সংকোচন প্রক্রিয়া (Compression process) ঃ সরল সম্পৃক্ত হিমায়ন চক্রের সংকোচন প্রক্রিয়া প্রেসার এনথালপি ডায়াহ্রামে ২—৩ রেখা দ্বারা নির্দেশ করা হয়েছে। এ কমপ্রেশন পদ্ধতিতে সম্পৃক্ত বাষ্প্রের চাপ ও তাপমাত্রা বৃদ্ধি করে। হিমায়কের চাপ বাষ্পীভবন (Evaporation) চাপ থেকে ঘনীভবন চাপে উন্নীত করা হয়। এ পদ্ধতি থার্মোডিনামিক্সে আইসেনট্রপিক (Isentropic) পদ্ধতি বলে।
- 8 বিন্দুতে যে এক্সপি (Entropy) থাকে ১ বিন্দুতেও একই এক্সপি থাকে। সেজন্য সংকোচন প্রক্রিয়া P-H ডায়াগ্রামে ধ্রুব এক্সপি (Constant entropy) লাইন অনুসরণ করে।

যে চারটি পার্মোডিনামিক প্রক্রিয়া একটি যান্ত্রিক হিমায়ন চক্র সম্পূর্ণ করে সেগুলো হল—

৪–১ = ধ্রুব এনধালপিতে সম্প্রসারণ প্রক্রিয়া (Expansion at adiabatic process)।

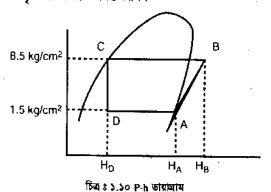
১–২ = ধ্রুব চাপে বাষ্পায়ন প্রক্রিয়া (Evaporation at isothermal & isobaric) ‡

২–৩ = ধ্রুব এন্ট্রপিতে সংকোচন প্রক্রিয়া (Compression at constant entropy)।

৩-8 = ধ্রুব চাপে ঘনীভবন প্রক্রিয়া (Condensation at isobaric) !

১.৫ বাষ্প সংকোচন সাইকেলে রেফ্রিজারেন্টের বিভিন্ন মান প্রেসার এনথালপি চার্টে বের করার নিয়ম 📮 (Explain P-H chart to determine different value of refrigerant of vapor compression cycle) 8

রেফ্রিজারেন্টের বিভিন্ন মান প্রেশার এনথালপি চার্টে বের করার জন্য প্রথমে ১.৩ এর ব্যাখ্যা অধ্যয়ন করতে হবে : এখানে ব্রু বর্ণ বরণ বরণ একাধিক R-১২ রেফ্রিজারেন্টের P-H চার্টের বিভিন্ন মান বের করার বর্ণনা নিম্নে দেয়া হল—
ধরি, হিমায়ক-12 ব্যবহৃত একটি সরল সম্পৃক্ত লীতল চক্রে বাল্পীভবন চাপ 1.5 কেজি/বঃসেঃ এবং ঘনীভবন চাপ 8.5 ব্রু বর্ণ বরংসেঃ । এ হিমায়ন চক্রের P-H diagram অন্ধন করতে হবে :


আন্ধান করেন্টের তরল কার্ড প্রেকের সম্পৃক্ত বাল্প কার্ড পর্যন্ত টানি ।

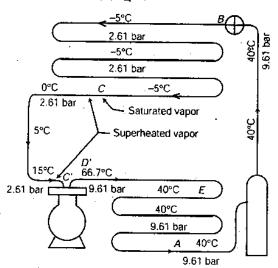
বর্ণ বর্ণ বেশা সেচুরিত তরল কার্ড থেকে সম্পৃক্ত বাল্প কার্ড পর্যন্ত টানি ।

C উদাহরণস্বরূপ একাধিক R-১২ রেফ্রিজারেন্টের P-H চার্টের বিভিন্ন মান বের করার বর্ণনা নিম্নে দেয়া হল--

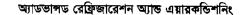
কেজি/বঃসেঃ। এ হিমায়ন চক্রের P-H diagram অঙ্কন করতে হবে।

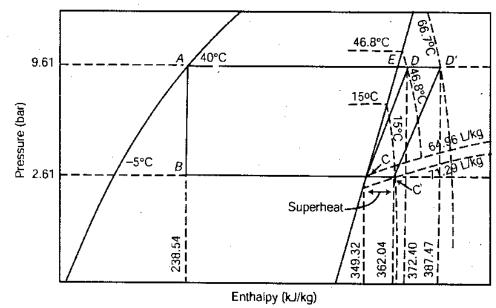
DA রেখা সেচুরিত তরঙ্গ কার্ড থেকে সম্পৃক্ত বাষ্প কার্ড পর্যন্ত টানি।

তারপর 8.5 কেজি/বঃসেঃ ঘনীভবন বা কভেনিং চাপ বরাবর ধ্রুব চাপ রেখার উপর CB রেখা সম্পৃক্ত বাম্প কার্ড থেকে ডান দিকে উত্তপ্ত বাষ্প্র অঞ্চল পর্যন্ত টানি। বাষ্পীভবন রেখা সম্পৃষ্ঠ বাষ্প্র কার্ডের A বিন্দুর থেকে ধ্রুব আইসেন্ট্রপিক কমপ্রেশন লাইন উপরের দিকে ঘনীভবন চাপ রেখাকে B বিন্দুতে স্পর্শ করে। ঘনীভবন চাপ রেখা যা সম্পৃক্ত বাষ্প কার্ডের C বিন্দু থেকে ধ্রুব এনধালপি অনুসরণ করে নিচের দিকে টানলে বাষ্পীভবন চাপ রেখার উপর ${f D}$ বিন্দুতে স্পর্শ করে ${f i}$ সুতরাং ${f P}$ - ${f H}$ চার্টে

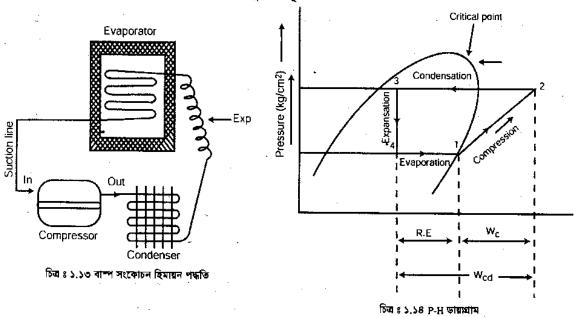

ABCD = সরল সম্পুক্ত হিমায়ন চক্র।

DA = ইভাপোরেটর কর্তৃক গৃহীত তাপ বা Refrigerating effect (RE)।


AB = হিট অব কমপ্রেশন বা কমপ্রেসর কর্তৃক কাজ (WD)।


BC ≈ কভেনার কর্তৃক বর্জিও তাপ i

CD = সম্প্রসারণ প্রক্রিয়া বা এক্সপানশন ভালভে প্রেসার ড্রপ।


চিত্র ঃ ১.১১ সুপারহিটেড চক্রের প্রবাহ চিত্র

টিঅ ঃ ১.১২ হিমায়ক -১২ এর সরল ও অতি উষ্ণচক্রের প্রেসার এনবালপি ভায়াগ্রামের তুলনা

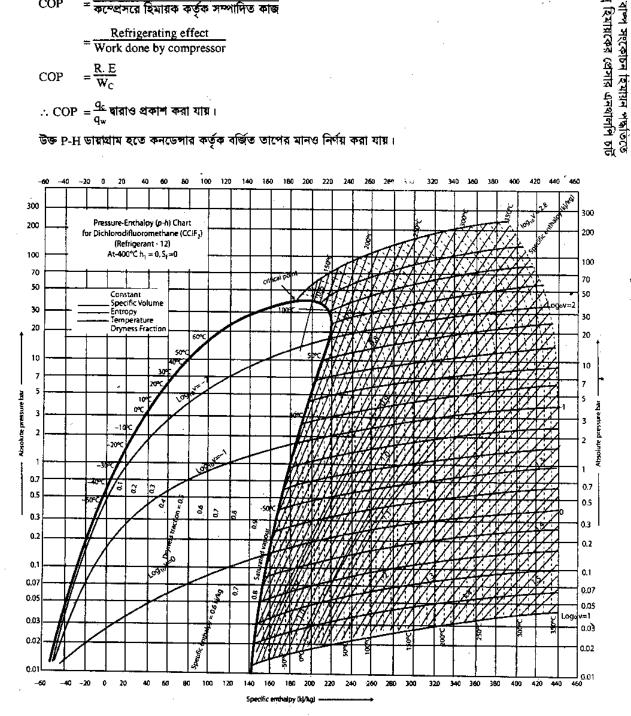
বাষ্প সংকোচন হিমায়ন পদ্ধতির P-H ডায়াগ্রামের বিভিন্ন মানসমূহ হল ঃ

উপরোক্ত চিত্র দুটি হতে আমরা পাই- বাম দিকের চিত্র বাষ্প সংকোচন হিমায়ন পদ্ধতির এবং ডান দিকের চিত্রটি P-H ডায়াগ্রামে উপস্থাপন।

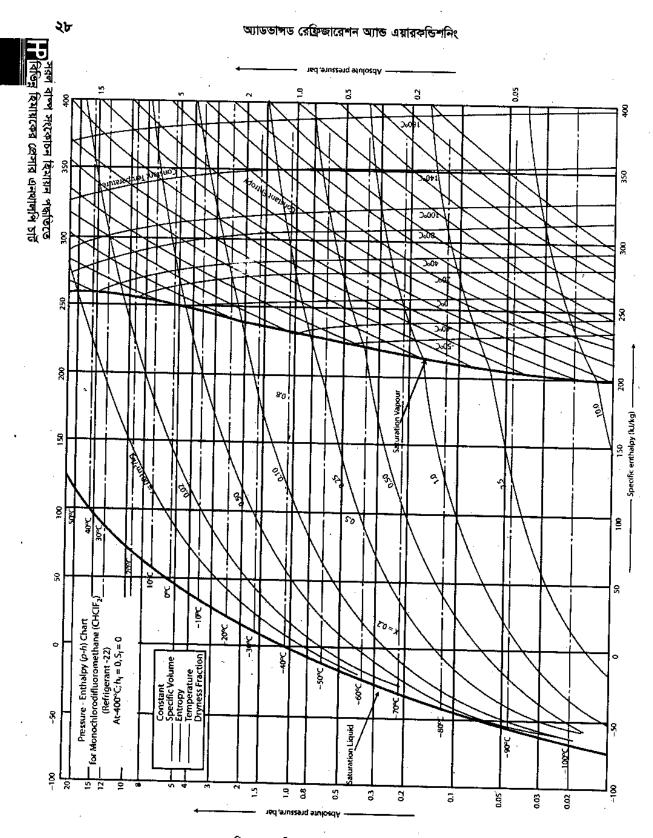
P-H ডায়াগ্রাম হতে আমরা দেখতে পাই যে, (1-2) কম্প্রেসর কর্তৃক সংকোচন প্রক্রিয়া (Work done by compressor) বা W_c দ্বারা প্রকাশ করা হয়েছে।

- (2–3) পাইনটি কনডেপার কর্তৃক বর্জিত তাপ (Heat rejected by condenser)
- (3–4) লাইনটি এক্সপানসেশন বা এক্সপানশন ডিভাইস কর্তৃক কৃতকাঞ্চ (Work done by expansation device)
- (4–5) লাইনট হল ইভাপোরেটর হতে কৃতকাজ (Work done by evaporation) যাকে সংক্ষেপে R.E বা রেফ্রিজারেটিং ইফেক্ট বা কুলিং ডয়েলের ঠান্তার মাত্রা নির্দেশ করে।

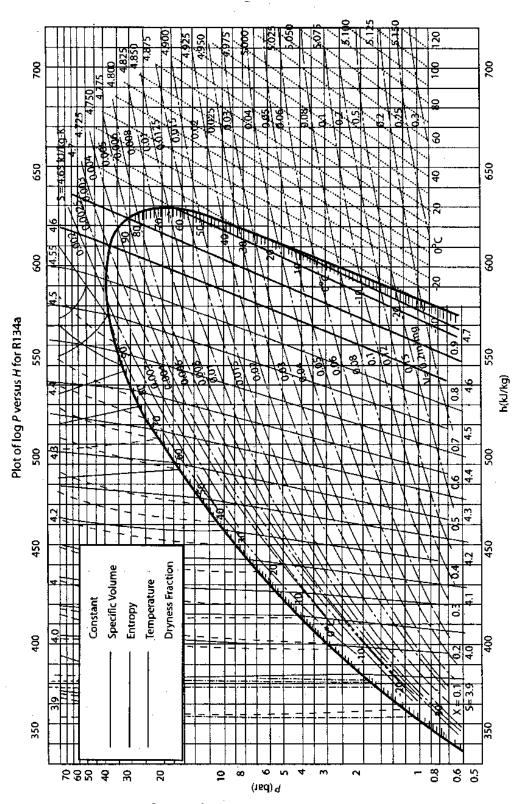
উল্লেখিত ডায়াগ্রাম হতে COP বা কো-ইফিসিয়েন্ট অব-পারফরমেন্স হল ঃ

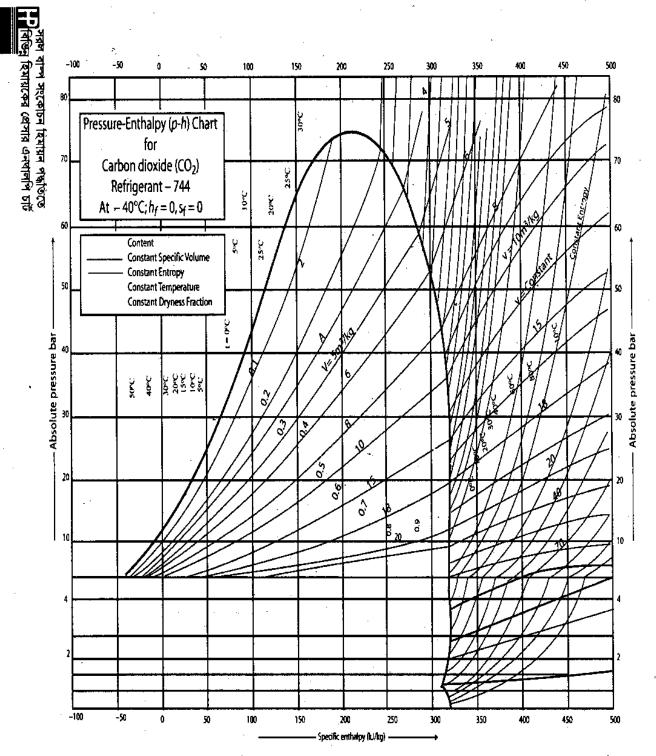

রেফ্রিজারেটিং ইফেক্ট COP ⁼ কম্প্রেসরে হিমায়ক কর্তৃক সম্পাদিত কাজ

> Refrigerating effect Work done by compressor


COP

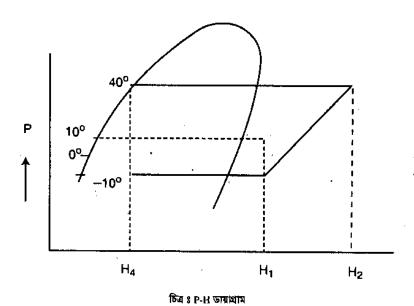
 $\therefore \ {
m COP} \ = rac{{
m q}_c}{{
m q}_w}$ ঘারাও প্রকাশ করা যায়।


উক্ত P-H ডায়াগ্রাম হতে কনডেঙ্গার কর্তৃক বর্জিত তাপের মানও নির্ণয় করা যায়।


চিত্ৰ ঃ হিমায়ক-১২ প্ৰেসার এনখালপি (P-H) চার্ট

চিত্র ঃ ১.১৬ হিমায়ক-২২ প্রেসার এনথালপি (P-H) চার্ট

চিত্র ঃ ১.১৭ হিমায়ক-১৩৪-র প্রেসার এনধাদপি ভারামাম



চিত্র ঃ ১.১৮ হিমায়ক-৭৪৪, প্রেসার এনখালপি (P-H) ভারামাম

১.৬ বিভিন্ন অবস্থানে এবং হিমায়কে P-H চার্টের মাধ্যমে সমস্যাবলি (Solved Problem with P-H Chart of different refrigeration at various condition) 8

থান্স সংকোচন হিমায়ন পদ্ধতিতে হিমায়কের প্রেসার এনখালপি চার্ট উদাহরণ-১.১। 134a হিমায়ক ব্যবহৃত একটি শীতকের বাস্পীতবন তাপমাত্রা (-10)° সেঃ এবং ঘনীতবন তাপমাত্রা 40° সেঃ। সাকলন সাইনে 10° কেলভিন সুপারহিট হলে (a) রেক্তিজারেটিং ইন্ফেট্ট (Refrigerating effect – RE) (b) কমপ্রেসর কর্তৃক কাজ 🕏 (Work done by the compressor - WD) এবং (c) কো-ইফিলিরেট অব পারকরম্যাল (Co-efficient of performance COP) নির্ণয় কর।

नवाधाम

40° ঘনীভবন তাপমাত্রা, (--10)° সেঃ বাস্পীভবন তাপমাত্রা এবং 10° কেলভিন সাকশন সুপারহিটেড প্রেসার এনথাঙ্গপি ডায়াগ্রাম অন্ধন করি। 134a হিমায়কের চার্টে এ ডায়াগ্রাম করা হলে পাওয়া যায়—

 $H_1 = 310 \text{ kJ/kg}$

 $H_2 = 350 \text{ kJ/kg}$

 $H_3 = H_4 = 160 \text{ kJ/kg}$

 $RE = H_1 - H_4$

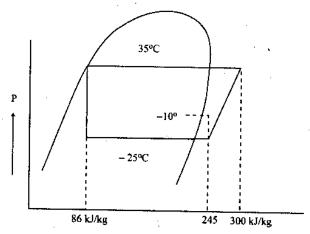
= 310 - 160 kJ/kg

∴ RE = 150 kJ/kg (উত্তর)

 $WD = H_2 - H_1$

 $= 350 - 310 \, kJ/kg$

∴ WD = 40 kJ/kg (উঃ)


 $COP = \frac{RE}{WD}$

∴ COP = 3.75 (উল্ল

অ্যাডভান্সড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

উদাহরণ-১.২। হিমায়ক-২২ ব্যবহৃত হিমায়ন চক্রের বাস্পীভবন তাপমাত্রা (--25)° সেঃ এবং ঘনীভবন তাপমাত্রা 35° সেঃ। সাকশন সুপারহিট 7° কেশভিন হলে চক্রটি P-H চার্ট্রে অন্ধন কর এবং RE, WD এবং COP নির্ণয় কর।

प्रमाशाम ह

চিত্র ঃ হিমায়ক-২২ এর P-H চার্ট

চার্ট থেকে আমরা পাই,

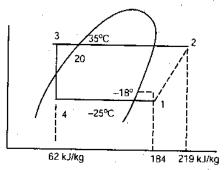
$$H_1 = 245$$

$$H_2 = 300 \text{ kJ/kg}$$

$$H_3 = H_4 = 86 \text{ kJ/kg}$$

$$RE = H_i - H_2$$

$$= 245 - 86$$


$$WD = H_2 - H_1$$

$$= 300 - 245$$

$$COP = \frac{RE}{WD} = \frac{159}{55}$$

উদাহরণ-১.৩। হিমায়ক-502 ব্যবহৃত একটি হিমায়ক চক্রের ঘনীভবন তাপমাত্রা 35° সেঃ এবং বাস্পীভবন তাপমাত্রা (~ 25)° সেঃ। কমপ্রেসরের সাক্ষানের সম্পৃক্ত হিমায়কের পরিবর্তে 7° সেঃ উত্তও (সুপারহিট) বাস্প প্রবেশ করে এবং তরল হিমায়ককে 15° পর্যন্ত অবনীতল করা হলে প্লান্টের (ক) RE (খ) WD এবং (গ) COP নির্ণয় কর।

त्रवाधास ह

চিত্র ঃ পি-এইচ ডায়াহাম

 $H_1 = 184 \text{ kJ/kg}$ $H_2 = 219 \text{ kJ/kg}$

 $H_3 = H_4 = 62 \text{ kJ/kg}$

 $(\overline{\Phi})$ RE = $H_1 - H_4$

= 184 - 62

∴ RE = 122 kJ/kg (উঃ)

(\forall) WD = $H_2 - H_1$

= 219 - 184

∴ WD =35 kJ/kg (উঃ)

(1) COP = $\frac{122}{35}$

∴ COP = 3.486 (উঃ)

হিমায়কের প্রবাহ নির্ণয় (Calculation of mass flow of refrigerant) \$

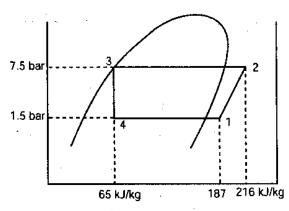
মনে করি:

- (ক) হিমায়ন যন্ত্রের ক্ষমতা (Refrigeration duty) kJ/sec অথবা KW।
- (ৰ) হিমায়কের প্রবাহের পরিমাপ (Mass flow of refrigerant) kg/Sec এবং
- (গ) হিমায়ন প্রভাব বা রেফ্রিজারেটিং ইফেস্ট (RE) kJ/kg। তাহলে হিমায়ন যদ্রের ক্ষমতা (kJ/S অথবা KW) = হিমায়কের প্রবাহের পরিমাণ (kg/Sec) × হিমায়ন প্রভাব (kJ/kg)
- ∴ kJ/Sec অপবা Kw = m×RE

উদাহরণ-১.৪। উদাহরণ ১.৩ এর হিমারণ বদ্ধের ক্ষমতা যদি ২.২ কিলোওরাট হর তাহলে প্রতি সেকেন্ডে কী পরিমাণ হিমারকের প্রবাহের দরকার হবে।

त्रभाषाम ह

উদাহরণ ১.৩-এর হিমায়ন প্রভাব বা Refrigerating effect, RE = 122 kJ/kg


হিমায়ৰ ক্ষমতা $Kw = m^{\circ} \times RE$

$$\therefore m = \frac{KW}{RE} = \frac{2.2}{122} = 0.018033 \text{ kg/Sec (উত্তর)}$$

উদাহরণ-১.৫ ঃ হিমারক-১২ ব্যবহৃত একটি বাস্প সংকোচন পদ্ধতির হিমারন চক্রে 7.5 এবং 1.5 ব্যারোমেট্রক চাপে বর্ধাক্রমে ঘনীভূত ও বাস্পীতবন ঘটে। বাস্পীভূত হিমারক (–15)° সেঃ ইভাপোরেটর ত্যাগ করে এবং 30° সেঃ কভেসার ত্যাগ করে। হিমারন চক্রের ইভাপোরেটরের ক্ষমতা 5 কিলোওরাট হলে নির্পর কর—

(ক) COP এবং (খ) হিমায়কের প্রবাহের পরিমাণ।

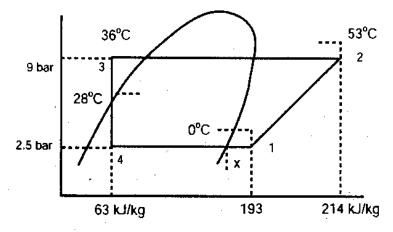
त्रवाधान ह

চিত্র ঃ P-H ভায়ামাম

∴ (ক) চত্তেলর COP =
$$\frac{RE}{WD}$$

= $\frac{H_1 - H_4}{H_2 - H_1}$
= $\frac{1464 - 325}{1635 - 1464}$
∴ COP = 6.6608 (উত্তর)

হিমায়কের প্রবাহ (Mass flow) = হিমায়নের ক্ষমতা


$$\therefore m = \frac{KW}{RE} = \frac{175}{1135} = 0.1536 \text{ kg/Sec.}$$

(খ) কমপ্রেসরের ক্ষমতা =
$$m \times WD$$

= $0.1536 \times (H_2 - H_1)$
= $0.1536 \times (1635 - 1464)$
= 0.1536×171

∴ কম্প্রেসরের ক্ষমতা = 26.366 KW (উঃ)

উদাহরণ-১.৭। বিমায়ক-১২ ব্যবস্থত একটি বিমায়ন চক্রে বিমায়ক প্রবাহের পরিমাণ 0.854 কেজি/সেঃ। প্লান্টের ঘনীতবন ও বাস্পীতবন চাপ যথাক্রমে 9.0 এবং 2.5 বার (bar)। মিটারিং ভিভাইসে তরল সৌহার পূর্বে ৪ ডিমি অবনীতদ করা হয় এবং কমপ্রেসরে 0° সেঃ এর বিমায়ক প্রবেশ করে। নির্দির কর—

- (ক) চত্ৰেনৰ COP।
- (খ) কমপ্রেসরের নির্গত গ্যাসের তাপমাত্রা এবং সুপারহিটের পরিমাণ :
- (গ) কমপ্রেসরের ক্ষমতা।
- (ঘ) কডেলারের ক্ষমতা :

চিত্র ঃ P-H ডায়াহ্যাম

त्रवाशम् 🖁

চার্ট থেকে আমরা পাই–

$$H_1 = 193 \text{ kJ/kg}$$

$$H_2 = 214 \text{ kJ/kg}$$

$$H_3 = H_4 = 63 \text{ kJ/kg}$$

∴ (क) চেকেন COP =
$$\frac{RE}{WD}$$

= $\frac{H_1 - H_4}{H_2 - H_1}$
= $\frac{193 - 63}{214 - 193}$
∴ COP = 6.19 (উस्त)

(ব) কমপ্রেসরের নির্ণত গ্যাসের তঃ মাত্রা

P-H চার্ট থেকে পাই 53° সেঃ (উব্জর)

এবং সুপারহিটের পরিমাণ 53 – 36 = 17°C (উন্তর)

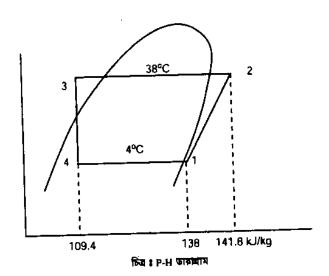
[বেহেতু সেচুরেশন তাপমাত্রা 36°]

(গ) কমপ্রেসরের ক্ষমতা = m × WD

=
$$0.854 \text{ kg/sec} \times (H_2 + H_1) \text{ kJ/kg}$$

$$= 0.854 \times (214 - 193) \text{ KW}$$

কম্প্রেসরের ক্ষমতা = 17.934 কিলোওয়াট (উঃ)


(খ) কভেদারের ক্ষমতা = (m) × (কভেদার কর্তৃক বর্জিত ভাপের পরিমাণ) $= 0.854 \times (H_2 - H_3)$ $= 0.854 \times (214 - 63)$

∴ কভেদারের ক্রমতা = 128.954 (কিলোগুয়াট) (উন্তর)

উদাহরণ-১.৮ ঃ ২-সিলিভার বিশিষ্ট একটি সিদেশ এটিং 10 cm × 10 cm R-12 কমপ্রেসর সূর্বন প্রতিমিশিটে (RPM) 750। ছনীভবন ও বাস্নীভবন ভাগমাত্রা ক্ষাক্রমে 38° সেঃ একং 40° সেঃ।

- (क) রেক্রিক্সরেউরের ক্রমতা।
- (ৰ) কমশ্ৰেসৰ চালাতে প্ৰয়োজনীয় অৰ্থকমতা (HP for the compressor), যদি কমশ্ৰেসৰের আরতনিক দক্ষতা ৮০ শতাংশ হয় ।
- (4) চকেন COP !

त्रवाशाय 🗗

সরদ বাস্প সংকোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনখালপি চার্ট

99

্রাধ্বর বাস্প সংকোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনথালপি চার্ট

P-H চার্ট থেকে পাওয়া যাবে,

 $H_1 = 138 \, kJ/kg$

 $H_2 = 141.8 \text{ kJ/kg}$

 $H_3 = H_4 = 109.4 \text{ kJ/kg}$

 $Vs2 = 0.055 \text{ m}^3/\text{kg}$

প্রতি মিনিটে সঞ্চালিত গ্যাসের পরিমাণ-

Swept volume by the

Compressor/Min =
$$\frac{\pi d^2}{4} \times \frac{L}{d} \times N \times n \times RPM$$

= $\frac{\pi}{4} \times \left(\frac{10}{100}\right)^2 \times \frac{10}{100} \times 0.8 \times 2 \times 750$
= 0.9425 m³/Min.

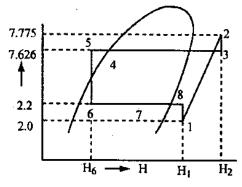
প্রবাহিত হিমায়কের ভর
$$m^{\circ} = \frac{\text{Swept Volume}}{\text{Specific Volume}} = \frac{m^3/\text{min}}{V_{s2}}$$

$$= \frac{0.9425}{0.055}$$

$$\therefore$$
 m = 17.136 kg/min.

(খ) কমপ্রেসর চালাতে ক্ষমতা =
$$\frac{17.136(141.8-138)}{10.54}$$
 = 7.85 HP (উঃ)

(গ) চতেন
$$COP = \frac{RE}{WD}$$


$$= \frac{H_1 - H_4}{H_2 - H_1}$$

$$\therefore COP = \frac{138 - 109.8}{141.4 - 138} = 7.526 \text{ (উত্তর)}$$

উদাহরণ-১.৯ ঃ বিমায়ক-১২ ব্যবহৃত একটি বিমায়ন বত্রের ক্ষমতা ২০ টন বার ইতাপোরেটিং তাপমাত্রা (-৪)° সেঃ এবং কভেলিং তাপমাত্রা 30° সেঃ। মিটারিং ডিভাইসে যাওয়ার পূর্বেই বিমায়ককে 5° ডিমি অবশীতল (Sub cooled) করা হয় এবং কমপ্রেসরে যাওয়ার পূর্বে 6° ডিমি উত্তর হয়। সাকশন 0.1 কেন্ডি/বর্গ সেঃ। চক্রটি অছন কর ও প্রতিটি যাপ বর্ণনা কর এবং নির্ণয় কর—

- (क) घटका COP।
- (খ) কমপ্রেসর চালাতে অবক্ষমতা।

जवाशाम ह

চিত্র ‡ P-H ভারাহাম

সরণ বাস্প সংকোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনথালপি চাট

P-H ডায়াগ্রামের প্রতিটি ধাপের বর্ণনা ঃ

1-2= কমপ্রেসরে ধ্রুব এক্টুপিতে সংকোচন।

2-3= কমপ্রেসরের ডিসচার্জ ভালন্ড চাপের পতন।

(Pressure drop in the discharge valve)

3 – 4 = কডেন্সারে ঘনীভবন।

4 – 5 = তরল হিমায়কের অবশীতলীকরণ।

5 – 6 = মিটারিং ডিভাইসে তরল হিমায়কের ধ্রুব এনধালপিতে সম্প্রসারণ।

6 - 7 - 8 = ইভাপোরেটরে ধ্রুব চাপে বাস্পায়ন।

8 – 1 = কমপ্রেসরের সাকশন ভালভ চাপের পতন।

(Pressure drop in the compressor suction valve)

প্রেসার এনথালপি চার্ট থেকে আমরা পাই--

 $H_8 = H_1 = 137.5 \text{ kJ/kg}$

 $H_3 = H_2 = 143 \text{ kJ/kg}$

 $H_5 = H_6 = 105.5 \text{ kJ/kg}$

হিমায়নের প্রভাব (RE) = $H_1 - H_6$

$$= 137.5 - 105.5$$

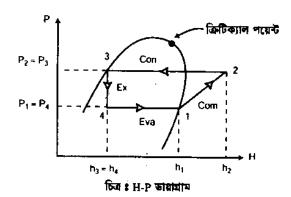
$$\therefore$$
 R.E = 32 kJ/kg.

কমপ্রেসারকৃত কাব্দ (WD) $H_2 - H_1$

$$= 143 - 137.5 \approx 5.5 \text{ kJ/kg}.$$

$$\overline{\text{DCOPS}} \text{ COP} = \frac{\text{RE}}{\text{WD}} = \frac{32.0}{5.5}$$

হিমায়ক প্রবাহের পরিমাণ (m) =
$$\frac{20 \times 50}{RE} = \frac{1000}{32}$$


কমপ্রেসর চালাতে ভাত্তিক অশক্ষমতা
$$HP = \frac{m(H_2 - H_1)}{10.54} = \frac{31.25(143 - 137.5)}{10.54}$$

উদাহরণ-১.১০ ঃ একটি R-12 হিমারন বত্রের ক্ষমতা 25 টন, বার ইভাপোরেটিড তাপমাত্রা (= 10)° সেঃ একং কভেলিং তাপমাত্রা 35° সেঃ। হিমারক কম্প্রেসরে প্রবেশের পূর্বে 5° সেঃ তাপমাত্রার উত্তর হয়। সম্পৃত্ত তরলের এনবালনি 230 kJ/kg, সম্পৃত বাম্পের এনবালনি 330 kJ/kg, সুপারহিটেড বাম্পের এনবালনি 360 kJ/kg হলে নির্দর কর ঃ

- (क) বিষয়ক ধাবাহের হার অথবা, হিমারকের পরিমাণ।
- (ব) কম্প্রেসরের ক্রমতা,
- (키) COP 1

্ [বাকাশিবো-২০০৪, ২০০৭, ২০১০, ২০১২, ২০১০ (পরি),২০১২, ২০১৪, ২০১৫(পরি)]

त्रवाधाव ह

এখানে,

(গ) COP = ?

 $H_1 = 330 \text{ kJ/kg}$

 $H_2 = 360 \text{ kJ/kg}$

 $H_3 = H_4 230 \text{ kJ/ kg}$

(ক) হিমায়কের পরিমাণ = ?

(খ) কম্প্রেসরের ক্ষমতা = ?

we know, 1 ਰੋਜ = 3.57 kw ∴ 25 ਰੋਜ = 3.57 × 25 kw = 89.25 kw (क) m = $\frac{kw}{RE}$ = $\frac{89.25}{330 - 230}$ _ 89.25

∴ m = 0.8925 kg/sec. Ans.

(খ) কম্পেসরের ক্ষমতা = m × WD = m × (H₂ - H₁) = 0.8925 × (360 - 330) = 0.8925 × 30

∴ কম্পেলর ক্ষতা = 26.77 kw (Ans)

(1) COP =
$$\frac{RE}{WD}$$

= $\frac{H_1 - H_4}{H_2 - H_1}$
= $\frac{330 - 230}{360 - 330}$
= $\frac{100}{30}$

 \therefore COP = 3.33 (Ans).

(গ) কভেদারের ক্ষমতা = m × কভেদার কর্তৃক বর্জিত তাপের পরিমাণ = 0.8925 × (H₂ – H₃) = 0.8925 × (360 – 230) = 116.025 kw (Ans)

উদাহরণ-১.১১। R-12 ব্যবহাত 1 টন ক্ষমতাসম্পন্ন একটি হিমারন যন্ত্র 0°C ইভাপোরেটিং তাপমাত্রা এবং 50°C কভেপিং তাপমাত্রা কান্ধ করছে। নিচের তথ্যের ভিস্তিতে সরল বাস্প সংকোচন হিমারন হিসেবে হিমারক বদ্রের COP এবং কম্পেসরে ক্ষমতা নির্ণর কর। যদি হিমারন যন্ত্রটিকে –5°C ইভাপোরেটিং তাপমাত্রা এবং 60°C কভেপিং তাপমাত্রায় হিট পাস্প হিসেবে ব্যবহার করা হয়, তবে নিচের তথ্যানুবারী এর COP এবং কম্প্রেসরের ক্ষমতা নির্ণর কর।

তথ্যগুলো ঃ

হিমারন বজের ক্ষেত্রে	হিট পাম্পের ক্ষেত্রে
$h_1 = 186 \text{ kJ/kg}$	$h_1 = 185 \text{ kJ/kg}$ $h_2 = 225 \text{ kJ/kg}$ $h_3 = 100 \text{kJ/kg}$
$h_2 = 215 \text{ kJ/kg}$	$h_2 = 225 \text{ kJ/kg}$
$h_3 = 85 \text{ kJ/kg}$	$h_3 = 100 kJ/kg$

ममाधाम*ह*

হিমায়ন যন্ত্রের ক্ষেত্রে এখানে,

$$H_1 = 186 \text{ kJ/kg}$$

 $H_2 = 215 \text{ kJ/kg}$
 $H_3 = H_4 = 85 \text{ kJ/kg}$

আমরা জানি (we know),

(ক) কম্প্রেসরের ক্ষমতা = m × WD

∴ m =
$$\frac{3.57}{\text{RE}}$$
 [∴ 1 $\overline{\text{Det}}$ = 3.57 kw]
= $\frac{3.57}{\text{H}_1 - \text{H}_4}$
= $\frac{3.57}{186 - 85}$ = $\frac{3.57}{101}$

$$\therefore$$
 m = 0.035 kg/sec.

কম্প্রের ক্ষমতা
$$= 0.035 \times (H_2 - H_1)$$

$$= 0.035 \times (215 - 186) = 0.035 \times 29$$

∴ কম্প্রেসরের ক্ষমতা = 1.015 kw (Ans).

(4) COP =
$$\frac{RE}{WD} = \frac{H_1 - H_4}{H_2 - H_1}$$

= $\frac{186 - 85}{215 - 186} = \frac{101}{29}$

হিট পাস্পের ক্ষেত্রে.

এখানে,

 $H_1 = 185 \text{ kJ/kg}$

 $H_2 = 225 \text{ kJ/kg}$

$$H_3 = H_4 = 100 \text{ kJ/kg}$$

(ক) কম্প্রেসরের ক্ষমতা = ?

আমরা জানি, (we know)

$$m^{\circ} = \frac{kw}{RE} = \frac{3.57}{H_1 - H_4} = \frac{3.57}{185 - 100} = \frac{3.57}{85}$$

= 0.042 kg/see

=
$$0.042 \times (H_2 - H_1)$$

= $0.042 \times (225 - 185)$
= 0.042×40


(◄) COP =
$$\frac{RE}{WD}$$

= $\frac{H_1 - H_4}{H_2 - H_1}$
= $\frac{185 - 100}{255 - 185} = \frac{85}{40}$
∴ COP = 2.125 (Ans)

উদাহরণ-১.১২। একটি R-12 সিস্টেমকে R-134a সিস্টেমে প্রতি ঘণ্টার 100 MJ তাপে গরম করার জন্যে হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি 20°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাস্পের এনধালপি 357 kJ/kg সম্পৃক্ত তরগের ক্রিপ্র এনধালপি 225 kJ/kg সুপারহিটের বাস্পের এনধালপি 377 kJ/kg হলে বের কর ঃ

- (ক) হিমায়কের পরিমাণ।
- (ব) কম্প্রেসরের ক্রমতা।
- (গ) পিস্টন ডিসপ্লেসমেন্ট (আরতনিক দক্ষতা .৭৫%)।
- (可) COP 1

अधाथान ह

[বাকাশিবো-২০০৩,২০০৫,২০০৬]

চিত্র ঃ P-H ভায়াগ্রাম।

আমরা জানি,

(we know)

1 টন = 3.57 kw

এখানে,

 $H_1 = 357 \text{ kJ/kg}$

 $H_2 = 377 \text{ kJ/ kg}$

 $H_3 = H_4 = 225 \text{ kJ/kg}$

(ক) বিমায়কের পরিমাণ = ?

- (খ) কম্প্রেসরের ক্ষমতা = ?
- (গ) পিস্টন ডিসপ্লেসমেন্ট = ?
- (**T**) COP = ?

$$(\overline{\Phi}) m = \frac{kw}{RE}$$

$$=\frac{3.57}{H_1-H_4}=\frac{3.57}{357-225}$$

 \therefore m = 0.027 kg/sec. (Ans).

(খ) কম্প্রেসরের ক্ষমতা = $m \times WD$

$$=0.027\times(H_2-H_1)$$

$$=0.027 \times (377 - 357)$$

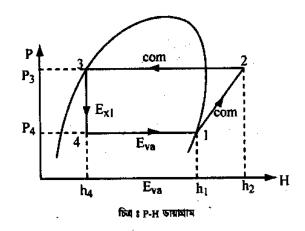
∴ কম্প্রসরের ক্ষমতা = 0.54 kg/sec (Ans).

সূত্র ঃ পিস্টন ডিসপ্লেসমেন্ট
$$PD = \frac{\pi d^2}{4} \text{ Kmn } \eta \text{ di } PD = \frac{ALNn}{1000} \text{ Lit/Sec}$$

(গ) এর তথ্যাবলি সমস্যায় দেয়া নাই, উপরে সৃত্ত দেয়া হল।

(4)
$$COP = \frac{RE}{WD} = \frac{H_1 - H_4}{H_2 - H_1} = \frac{357 - 225}{377 - 357} = \frac{132}{20} = 6.6$$
 (Ans).

আডভান্সড রেফ্রিজারেশন আভ এয়ারকন্ডিশনিং-৬


ইন বান্প সংকোচন হিমায়ন পদ্ধতিতে ভিন্ন হিমায়কের প্রেসার এনথালপি চাট ইমায়কের প্রেম্বর প্রেমায়কর প্রমায়কর প্রমায়ক

উদাহরণ-১.১৩ ঃ আামোনিরা ব্যবহৃত একটি হিমার্ন চক্রে হ্নীভবন ভাপমাত্রা 30°C এবং এক্সপানশন ডিভাইসে সেচুব্লিভ ভরণ প্রবেশ করে। ইভাগোরেটরের চাপ 2.9 বার (bar)। এ থিমায়ক (–৪)°C ভাগমাত্রার কম্প্রেসরে প্রবেশ করে। সম্পৃত তরলের এনখালণি 1464 kJ/kg, সম্পৃক্ত তরলে এনখালণি 325kJ/kg কম্প্রেসর দিরে কম্থেসভ বার

- (ক) হিমায়ক প্রবাহের পরিমালঃ
- (◄) COP;
- (গ) কম্বেসর এর ক্ষতা ও ঘনীতবন ক্ষতা

[বাকাশিবো-২০০৯]

$$h_2 = 1635 \text{ kJ/kg}$$

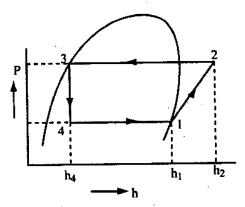
$$h_3 = h_4 = 325 \text{ kJ/kg}$$

$$h_1 = 1464 \text{ kJ/kg}$$

- (ক) হিমায়ক প্রবাহের হারল =? (খ) Cop =?
- (গ) কম্প্রেসর এর ক্ষমতা ও ঘনীভবন ক্ষমতা

$$(\overline{P}) \text{ m} = \frac{KW}{RE} = \frac{3.57}{H_1 - H_4}$$

$$= \frac{3.57}{1464 - 325}$$


$$= 3.134 \times 10^{-3} \text{ kg/sec Ans.}$$

(4) Cop =
$$\frac{RE}{WD} = \frac{H_1 - H_4}{H_2 - H_1}$$

= $\frac{1464 - 325}{1635 - 1464} = 6.66$ Ans.

ঘণিভবন ক্ষমতা =
$$m(H_2 - H_3)$$

= $3.134 \times 10^{-3} (1635 - 325)$
= 4.10 kw Ans.

উদাহরণ-১.১৪ ঃ একটি R-12 হিমারক ব্যবহৃত সিন্টেম প্রতি কটার 100 MJ তাপে গরম করার জন্য হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি 15°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃত বাম্পের এমথালি 357kJ/kg, সম্পৃত তরলের ক্রি ব্রাক্থালি 22kJ/kg, স্পারহিটেড বাম্পের আন্ধালি 377kJ/kg, হলে বের কর ঃ

- (ক) হিমাত্রকের পরিমান
- (খ) কমপ্রেসরের ক্ষমতা,
- (গ) গিন্টন ডিসপ্লেসমেন্ট, যদি আয়তনিক দক্ষতা ৪5% হর,
- (ঘ) COP (হিট পাস্প)

চিত্র 8 P-H ডারাশ্রাম

त्रषांचा 🖁

দেওয়া আছে,

 $h_1 = 357 \text{ kJ/kg}$

 $h_2 = 377 \text{ kJ/kg}$

 $h_4 = 22 \text{ kJ/kg}$

আমরা জানি, ১ টন = 3.57 kw.

$$(\overline{\Phi}) \text{ m} = \frac{KW}{RE} = \frac{3.57}{H_1 - H_4}$$

= $\frac{3.57}{357 - 22} = 0.0106 \text{ kg/sec. Ans.}$

(খ) কম্প্রেসরের ক্ষমতা = m × WD

$$= 0.0106 \times ({\rm H_2 - H_1})$$

$$= 0.0106 \times (377 - 357)$$

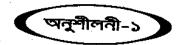
 $= 0.213 \cdot kw.$

(গ) পিস্টল ডিসপ্লেসমেন্ট $PD = \frac{\pi d^2}{4} m^2$ বা $PD = \frac{ALNn}{1000}$ Lit/sec.

N.B. তথ্যাবলি সমস্যায় দেয়া নাই,

(ঘ) Cop (হিট পাম্প) =
$$\frac{H_1 - H_4}{H_2 - H_1} + 1 = \frac{357 - 22}{377 - 357}$$

$$= 16.57 + 1 = 17.57$$
কভেদার এর ভাপ বর্জন
$$= \frac{\pi \text{C-প্রসর এর পাম্পিং শক্তি}}{\pi \text{C-প্রসর এর পাম্পং শক্তি}}$$


$$= \frac{H_2 - H_3}{H_2 - H_1}$$

$$= \frac{377 - 22}{377 - 357} = 17.75 \text{ Ans.} \quad .$$

সরল বাস্প সংকোচন হেমায়ন সন্ধাততে বিভিন্ন হিমায়কের প্রেসার এনথালসি চাট

উদাহরণ-১.১৫। একটি R-12 হিমায়কের থার্মোডাইনামিক্স প্রপারটি সাক্সন উল্কভার বাস্পীয় হিমায়কের আপেন্ধিক আয়তন এবং এনুখালপি যথাক্রমে 15°C উক্ষভার V = 92.7 লি./কেজি এবং এনুখালপি 223.54 kJ/kg। বাল্পীয় হিমায়ক সংকোচনের পর এনথালগি 344.94 kJ/kg এবং হিমায়কের প্রসারণ এনথালগি 135.34 kJ/kg হয় তবে বাহির কর যে, (ক) কার্যকরী হিমারন (ব)

- (ক) কাৰ্যকরী হিমায়ন = h_t h₄ = 223.54 135.34 = 88.20 kJ/kg Ans.
- (খ) কম্প্রেসরের বাষ্প = $h_2 h_4 = 344.94 223.54 = 121.4 \text{ kJ/kg Ans.}$
- (গ) হিমায়ন প্রবাহের পরিমাণ = $\frac{KW}{RE}$ = $\frac{3.57}{88.2}$ = 0.04 kg/sc Ans.
- (a) $Cop = \frac{RE}{WD} = \frac{121.4}{88.20} = 1.38 \text{ Ans.}$

🔰 অতি সংক্ষিম্ভ প্রব্লোচর :

P-H চার্ট কাকে বলেগ 16

বাকাশিবো-২০১০ (পরি)]

(**উভর 🖹)** যে চার্টের মাধ্যমে ইউনিটের প্রেসার এবং এমধাঙ্গপি এর মান নির্ণয় করে প্রেসার এবং এনধাঙ্গপির যাবতীয় সমস্যা সমাধান করা যায় তাকে P-H চার্ট বলে। এর P ধারা Pressure (চাপ) এবং H দ্বারা Enthalpy (তাপ) প্রকাশ করে।

२। p-h ভারাগাম কাকে বলে?

> **ঠিছর 🛮** যে ডায়াঘামের মাধ্যমে ভ্যাপার কম্প্রেশন সাইকেলের প্রধান অংশসমূহের কার্যনীতি অনুসারে চাপীয় এবং তাপীয় অবস্থা প্রকাশ করা হয়, তাকে P-H ভায়াঘাম বলে।

COP বলতে কী বুঝা

[বাকাশিবো-২০১০ (পরি)]

ঠিচর COP এর পূর্ণ নাম হল Co-efficient of performance. COP বলতে আমরা কম্প্রেসরের কাজ এবং রেফ্রিজারেটিং ইফেক্ট এর রেশিও (অনুপাতকে) বুঝি।

COP নিৰ্পয়ের সূত্ৰটি দিব i

[বাকাশিবো-২০১১ (পরি)]

ঠিভন্ন 🕏 COP নিৰ্ণয়ের স্থাটি হল ঃ COP =

রেক্রিজারেটিং ইফেট্ট কী?

[বাকাশিবো-২০০৪]

ঠিতর 🖺 কুলিং কয়েল বা ইভাপোরেটর এর আউটপুট ক্ষমতাকে রেফ্রিজারেটিং ইফেস্ট বলে।

ঞিটিক্যাল পয়েন্ট কাকে বলে?

ঠিতর ব্রু সেচুরেটেড লিকুইড (সম্পৃক্ত তরল) লাইন এবং সেচুরেটেড ভ্যাপার (সম্পৃক্ত বাস্প) লাইন যে বিন্দৃতে মিলিত হয় সেই বিন্দুকে ক্রিটিক্যাল পয়েন্ট বলে।

8&

P-H চার্টের ডিনটি অঞ্চলের নাম লিখ। 91

[বাকাশিবো-২০০৭, ১২]

অথবা, P-H চার্টের প্রধান অঞ্চলগুলোর নাম লেখ । ।

[বাকাশিবো-২০১২(পরি), ২০১৪] ব

অথবা, P-H চার্টের অঞ্চল কয়টি ও কী কী?

🕏 চর 🖁 P-H চার্টের তিনটি অঞ্চলের নাম নিম্নে দেয়া হল—

- 🕽 । সাবকুন্ড অঞ্চল ।
- । সুপারহিটেড অঞ্চল ।
- ৩। ফেব্ৰু চেঞ্চ অঞ্চল।
- RE নির্ণয় করার সূত্রটি লিখ।

উচন 🗿 RE = h₁ - h₃ বা h_i - h₄

কম্প্রেসর কর্তৃক কাজ নির্ণয়ের সূত্রটি লিখ।

(**ទីខর 🖟**) W_C = h₂ - h₁.

১০। এনধালদি কী?

[বাকাশিবো-২০১১, ২০১৪]

[বাকাশিবো-২০১৫(পরি)]

অথবা, এনথাদপি বদতে কী বোঝায়?

্ঠিছর ব কান প্রবাহীর চাপ ও আয়তনের গুণফল (×) বা প্রবাহজনিত কাজ এবং অন্তর্নিহিত শক্তির যোগফলকে (+) এনথালপি বলে।

গাণিতিকভাবে $h = e + P_V$ অথবা, $h = U + P_V$

এনথালপির একক kJ/ kg ১১। ১ টন অব রেফ্রিজারেশন সমান কভ kw?

[বাকাশিবো-২০০৯]

🕏 ছব্র 🛭 🕽 টন অব রেফ্রিজারেশন = 3.57 k watt.

১২। হিট অব কনডেলেশন বলতে কী বুঝার?

[বাকাশিবো-২০০৪, ০৭]

🝅 🗷 🖟 হিমায়কের পরিমাণ এবং ওয়েট ডিফারেন্ট এর গুণফলকে হিট অব কভেঙ্গেশন বলে।

১৩। হিমায়ন চক্রের উপর হিমায়কের ইভাপোরেটিং ও কভেনিং প্রেসারের প্রভাব কী?

[বাকাশিবো-২০০৩, ০৫, ০৬]

🝅 চর 📕 হিমায়ন চক্রে হিমায়ন ইভাপোরেটিং এবং কভেন্সিং দ্রুব চাপে সংগঠিত হয়, সুতারং প্রেসারে প্রভাব দ্রুব।

১৪। একটি যান্ত্ৰিক হিমায়ন চক্ৰে যে থাৰ্মোডিনামিক প্ৰক্ৰিয়া বিদ্যমান, তা শিখ।

[বাকাশিবো-২০০৪]

ক্রিন্তর ব্রাহ্প সংকোচন পদ্ধতির সরল সম্পৃক্ত হিমায়ন চক্র মূলত প্রধান চারটি অংশে চারটি থার্মোডিনামিক্স প্রক্রিয়ায় সম্পদ্র হয়—

- 🕽 । সংকোচন প্রক্রিয়া (Compression process) ।
- ২। ঘনীভবন প্রক্রিয়া (Condensation process)।
- ৩। সম্প্রসারণ প্রক্রিয়া (Expansion process)।
- 8 । বাষ্পায়ন প্রক্রিয়া (Evaporation process) ।

বিষ্প সংকোচন হিমায়ন পদ্ধতিতে সিহিমায়কের প্রেসার এনখালপি চার্ট কিন্তু কিন্তু কিন্তু প্রায়ন পদ্ধতিতে

সংক্ষিপ্ত প্রব্রোয়র :

। একই আদর্শ শ্রেসার এনধালসি ডারাগ্রাম অন্ধন কর।

ठेडव ह

	Critical point سے				
	Critical pressure				
Pressure ——	Super cooled Super cooled liquid region Vet vapour region Vapour fine Vapour fine Constant volume Constant temperature Constant entropy				

चित्र श Pressure-enthalpy (P-H) chart.

২। p-h চার্ট বলতে কী বুবার?

ইছর বালপ সংকোচন বা জ্যাপার কম্প্রেলন হিমায়ন চক্র বিশদভাবে অধ্যয়ন ও বিশ্লেষণ করার জন্য প্রতিটি হিমায়কের জন্য পৃথকভাবে প্রস্তুত হিমায়ন চক্রের সংকোচন, ঘনীতবন, সম্প্রসারণ ও বাল্পায়ন প্রক্রিয়ায় চাপ ও তাপীয় যে সমস্ত থার্মোভাইনামিক্স পরিবর্তন ঘটে তা একটি চার্টে বিভিন্ন রেখার মাধ্যমে সন্নিবেশিত করা হয়, উক্ত চার্ট বা রেখাচিত্রকে প্রেসার এনথালপি চার্ট বল্য হয়।

৩। COP এর মান কীভাবে বাড়ানো বারু

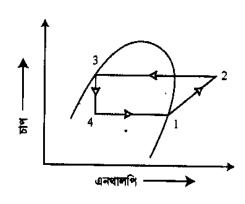
[বাকাশিবো-২০১০]

অথবা, COP-এর ওক্তত্ব বর্ণনা কর।

[বাকাশিবো-২০০৯]

ಶ হল 🛮 COP এর মান বাড়ানোর উপায় নিম্নে দেয়া হল—

- ১। রেফ্রিজারেটিং ইফেট বৃদ্ধি করে।
- ২। কম্প্রেসরের কাজ কমিয়ে।
- ৩। সাবকৃন্ড করে।
- ৪। দৃটির আনুপাতিক হার বাড়িয়ে।
- 8। RE, WD अवर COP निर्देशक मृज्यकरणा निर्प ।


(ਤੇਡਗ)
$$RE = h_1 - h_4$$
, $W_{CD} = h_2 - h_1$, $Cop = \frac{RE}{W_C/W_D}$

৫.। একটি সম্পৃক্ত সবল হিমায়ন চক্রের P-H ভারাগ্রাম অবন কর।

[বাকাশিবো-২০১৫(পরি)]

अंडव ह

একটি সম্পৃক্ত সরল হিমায়ন চক্রের P-H ভায়াগ্রাম অন্তন করে দেখানো হল ঃ

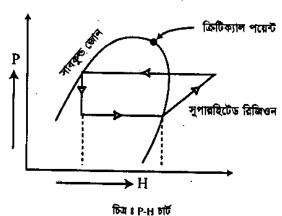
विद्य इ.P-H वर्षे

৬। RE = 90 kJ/kg এবং WD = 30 kJ/kg **হলে** Heat of condensation কড? [বাকাশিবো-২০১১ (পরি), ২০০৭, ২০১০]

353 we know
$$m = \frac{kw}{RE}$$

$$= \frac{3.57}{90} = 0.039$$

Heat of condensation = $m \times WD$


$$= 0.039 \times 30$$

= 1.19 kw (Ans)

৭। পি.এইচ চার্ট অঙ্কনপূর্বক বিভিন্ন Zone-এর বর্ণনা দাও।

[বাকাশিবো-২০০৯]

🥦 ভর 🔊 পি.এইচ চার্ট অঙ্কনপূর্বক বিভিন্ন Zone-এর বর্ণনা নিম্নে দেখানো হল ঃ

৮। DBT अवर WBT अब मरका मोड।

[বাকাশিবো-২০০৯]

্তিত্ব ক্লী ফ্লাই বাৰ তাপমাত্রা (Dry bulb temperature) ঃ সাধারণ থার্মোমিটারে বাতাসের যে তাপমাত্রা পাওয়া যায়, তাকে DBT বলে।

WBT ঃ যে তাপমাত্রায় প্রবহমান বাতাসে পানির বাঙ্গীভবন দ্বারা বাতাসকে তাপরোধী অবস্থায় সম্পৃক্ত অবস্থায় আনা যায়, তাকে ওয়েট বাল্প তাপমাত্রা বলে :

্রিশয়ণ থা-ন নংকোচন হিনায়ন শক্ষাততে বিভিন্ন হিমায়কের প্রেসার এনথাললি চাট সরল বাষ্প সংকোচন হিমায়ন পদ্ধতিতে বিভিন্ন হিমায়কের প্রেসার এনথালপি চার্ট

Critical temparatur, Critical pressure Ges Critical point এর সংজ্ঞা দাও। অথবা, ক্রিটিক্যাঅন প্রেসার কাকে বলে?

[বাকাশিবো-২০১১(পরি)]

<u>ভিতর 🖁</u>

- সংকোট বিন্দু (Critical point) ঃ লেখচিত্রের চূড়ার দিকে সম্পৃক্ত তরল রেখা এবং সম্পৃক্ত বাষ্প রেখা যে বিন্দুতে
 মিলিত হয়, তাকে সংকোট বিন্দু বলে।
- সংকোট তাপমাত্রা (Critical temparature) ঃ সংকোট বিন্দুতে প্রবাহী বা ফুইডের তাপমাত্রাকে সংকোট তাপমাত্রা
 বলে । পানির সংকোট তাপমাত্রা Tc = 647.3k.
- সংকোট চাপ (Critical pressure) ঃ সংকোট বিন্দুতে প্রবাহীর চাপকে সংকোট চাপ বলে।
 পানির সংকোট চাপ, Pc = 221.2 bar বা 221 kg/cm²

> द्रष्ठनासूनक श्रन्नाविन :

১। P-H চার্টের বিভিন্ন লাইন s জোনসমূহ ব্যাখ্যা কর।

উচন সহকেত 🚱 অনুচেছদ ১.৩ নং দ্রষ্টব্য।

২। P-H চার্টের সরল সম্পুক্ত হিমায়ন চক্র এঁকে বর্ণনা কর।

ঠিচর সহকেত ह। অনুচেছদ ১.৪ নং দ্রষ্টব্য ।

৩। বিস্তারিতভাবে P-H এবং T-S ডায়াগ্রামের চিত্রসহ সংজ্ঞা শিখ।

উচর সংক্রেত 🔊 অনুচ্ছেদ ১.৩ নং দ্রষ্টব্য।

. 8। P-H এবং T-S ডারাগ্রামের ট্রপিক্যাল চিত্রের বিভিন্ন অংশ চিহ্নিত করে তাদের কার্যপ্রশালি বর্ণনা কর।

উচন সহকেত 🚱 অনুচেছদ ১.৩ নং দ্ৰষ্টব্য।

৫। P-H এবং T-S ভারাপ্রামের বিভিন্ন ধরনের লাইন ও জোনের নাম লিখে কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

উচন সংক্রেন্ড ঃ) অনুচ্ছেদ ১.৪ নং দ্রষ্টব্য ।

৬। বিভিন্ন অবস্থানে বাস্প সংকোচন হিমায়ন পদ্ধতির P-H ভারাগ্রাম অঙ্কন করে সংক্ষেপে তাদের কার্বনীতি উল্লেখ কর।

<mark>উত্তর সমকেত ভ</mark> অনুচেছদ ১.৪ নং দ্রউব্য।

৭। বাস্প সংকোচন বিমায়ন পদ্ধতির বিভিন্ন মানসমূহ বের করার নিয়ম ও চিত্র উল্লেখ করে বর্ণনা দাও।

উচর সংক্রেন্ড 🕝 অনুচ্ছেদ ১.৫ নং দুটব্য ।

৯। R – 12 ব্যবহৃত 1 টন ক্ষমতাসম্পন্ন একটি হিমায়ন বন্ধ 0°C ইভাপোরেটিং তাপমাত্রা এবং 50°C কভেলিং তালমাত্রর কাজ করছে। নিচের তথ্যের ভিত্তিতে সরল বাল্প সংকোচন হিমায়ন হিসেবে হিমায়ন বন্ধের COP এবং কম্প্রেসরের ক্ষমতা নির্পন্ন কর। বঁদি হিমায়ন বন্ধটিকে 5°C ইভাপোরেটিং তাপমাত্রা এবং 60°C কভেলিং তাপমাত্রায় হিট পাম্প হিসেবে হ্বক্রের করা হয়, তবে নিচের তথ্যানুষায়ী ওটির COP এবং কম্প্রেসরের ক্ষমতা নির্পন্ন কর।

তথ্যাদি ঃ

হিমায়ন যন্ত্রের ক্ষেত্রে	হিট পাম্পের ক্ষেত্রে		
$h_i = 186 \text{ kJ/kg}.$	$h_1 = 185 \text{ kJ/kg}.$		
$h_2 = 215 \text{ kJ/kg}.$	$h_2 = 225 \text{ kJ/kg}.$		
$h_3 = 215 \text{ kJ/kg}.$	$h_2 = 100 \text{ kJ/kg}.$		

কম্পাউন্ত ভেপার কম্প্রেশন পদ্ধতি (Compound vapor compression system)

২.০ ভূমিকা (Introduction) 8

কম্পাউন্ত ভ্যাপার কম্প্রেশন পদ্ধতি মূলত যৌগিক বাষ্প সংকোচন পদ্ধতি এক্ষেত্রে এক বা একাধিক কম্প্রেসর (Compressor) বুড় হয়ে সংকোচন প্রক্রিয়া সম্পন্ন করে। যৌগিক সংকোচন হিমায়ন পদ্ধতিতে ইন্টারকুলারের সমন্বয়ে গঠিত হয়। ইন্টারকুলার ব্রী মূলত প্রথম কম্প্রেসরের হিমায়ক সংকোচন করার পর দ্বিতীয় কম্প্রেসরে সংকোচন করার পূর্ব হিমায়কের কিছুটা শীতল করতে প্রত্বাহত হয়। এ ছাড়াও ইন্টারকুলার ব্যবহারের ফলে কম্প্রেসরের কাজ কম লাগে যার ফলে COP এর মান বেশি হয়। নিচ্চ ভাপমাত্রা (Low temperature) আনয়নে কম্পাউন্ত ভেপার কম্প্রেশন বা যৌগিক হিমায়ন পদ্ধতি ব্যবহৃত হয়। আলোচ্য অধ্যায়ে ব্রীপিক হিমায়ন পদ্ধতির সংজ্ঞা, সুবিধাসমূহ ইন্টারকুলারসহ, বিভিন্ন ধরনের ইন্টারকুলারসহ যৌগিক হিমায়ন পদ্ধতি, টু-স্টেজ ও খ্রি-স্টেজ সংকোচন পদ্ধতি ইত্যাদি সম্পর্কে বিজ্ঞারিত জানা যাবে।

২.১ কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতি (State the meeming of compound vapor compression system) 8

দুই বা ততোধিক কম্প্রেসর ব্যবহার করে বিভিন্ন ধাপে সংকোচন (কম্প্রেশন) করার প্রক্রিয়াকে কম্পাউন্ত ভেপার কম্প্রেশন পদ্ধতি (Compound vapor compression system) বলে।

কম্পাউন্ত ভেপার কম্প্রেশন পদ্ধতিকে মান্টিস্টেজ ভেপার কম্প্রেশন পদ্ধতি বলা হয়।

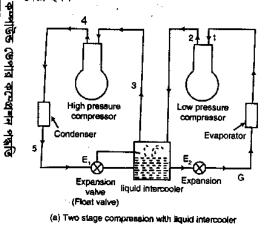
২.২ ইন্টারকুলার ব্যবহৃত কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতির সুবিধা (Mention the advantages of compound vapor compression with intercooler) 8

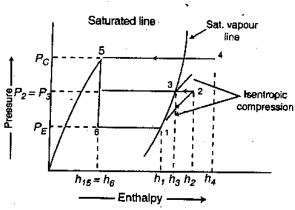
নিম্নে সিক্সেল স্টেজ কম্প্রেশনের তুলনা ইন্টারকুলার ব্যবহার করে মান্টিস্টেজ কম্প্রেশনের সুবিধাগুলো বর্ণনা করা হল-

- ১। প্রতি কেজি রেফ্রিজারেন্ট সংকোচন করতে কম্প্রেসর কর্তৃক কাজ সিঙ্গেল স্টেজের তুলনায় কম লাগে।
- ২। আয়তনিক দক্ষতা বৃদ্ধি পায়।
- ৩। তুলনামূলকভাবে লিকেজ লস কম হয়।
- ৪। যেহেতু এটি সমমানের টর্ক সরবরাহ করে, ফলে ছোট আকারের ফ্লাই-ছইল প্রয়োজন হয়।
- ৫। কম তাপমাত্রার কারণে সঠিকভাবে লুব্রিকেশন সম্পন্ন হয়।
- ৬। কম্প্রেসরের ব্যয় কমায়।
- ৭। COP বৃদ্ধি পায়।

২.৩ ইন্টারকুলার ব্যবহৃত বিভিন্ন মান্টিন্টেজ বা কম্পাউন্ত ভেপার কম্পেশন পদ্ধতি (Name the different types of compound vapor compression with intercooler) ঃ

মান্টিস্টেজ ডেপার কম্প্রেশন পদ্ধতিতে দু'টি কম্প্রেসরের মধ্যে ইন্টারকুলার' ব্যবহার করা হয়। প্রথম কম্প্রেসরে হিমায়ক সংকোচন করার পর দ্বিতীয় কম্প্রেসরে সংকোচন করার পূর্বে হিমায়কের কিছুটা শীতল করাই ইন্টারকুলারের কাজ। নিচে ইন্টারকুলার ব্যবহৃত বিভিন্ন মান্টিস্টেজ ডেপার কম্প্রেশন পদ্ধতি দেয়া হল্-

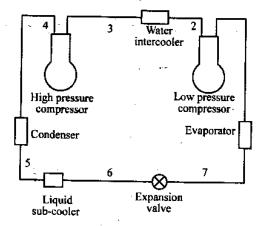

- ১। লিকুইড ইন্টারকুলার ব্যবহৃত দুই ধাপে সংকোচন (Two stage compression)।
- ২। ওয়াটার ইন্টারকুলার দুই ধাপে সংকোচন।
- ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার এবং লিকুইড ফ্লাশ চেঘার ব্যবহৃত দু'ধাপে সংকোচন।
- 8। ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার এবং ফ্লান ইন্টারকুলার ব্যবহৃত দু'ধাপে সংকোচন।
- । ফ্লাশ ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।
- ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পৃদ্ধতি।
- ৭। ফ্লাশ চেম্বার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।

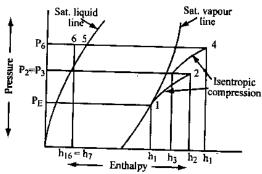

গাডভাসড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশ্নিং–৭

কম্পাউভ ে

২.৪ পিকুইড ইন্টারকুপার ব্যবহৃত দুই ধাপে সংকোচন পদ্ধতির বর্ণনা (Describe the two stage compression with liquid Intercooler) ঃ

চিত্র ২.১ এ নিম্নে একটি পিকুইড ইন্টারকুলার ব্যবহৃত টু স্টেজ কম্প্রেশন পদ্ধতির প্রবাহ চিত্র এবং প্রেসার এনথালপি ভায়াগ্রাম দেয়া হল।

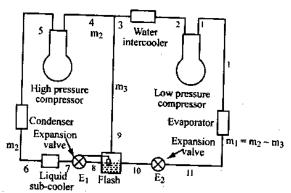

চিঅ ঃ ২.১ পিকুইড ইণ্টার কুলারসহ বাস্প সংকোচন পদ্ধতি

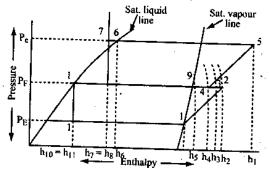

বর্শনা ঃ প্রথমে লো-প্রেসার কম্প্রেসর থেকে সংকৃচিত সুপারহিটেড ভেপার লিকুইড ইন্টারকুলারে পাঠায়। অপরদিকে কভেদার থেকে আগত তরল হিমায়ক এক্সপানশন ভাল্ভ (E₁) ঘারা প্রবাহ নিয়ন্ত্রিত হয়ে লিকুইড ইন্টারকুলারে আসে। এক্সপানশন ভাল্ভ (E₁) মূলত প্রোটল ভাল্ভ হিসাবে কাজ করে ইন্টারকুলারে একটি নির্দিষ্ট লিকুইড লেকেল বজায় রাখে লিকুইড ইন্টারকুলারে তরল হিমায়ক আংশিক বাম্পায়নের মাধ্যমে লো প্রেশার কম্প্রেসর থেকে আগত সুপারহিটেড হিমায়ককে কিছুটা শীতল করে একই চাপে সেচুরেটেড ভেপার হিমায়কে পরিণত করার পর হাইপ্রেসার কম্প্রেসরে প্রেরণ করে। হাইপ্রেসার কম্প্রেসর লিকুইড ইন্টারকুলার থেকে আগত বাম্পায়িত হিমায়ককে সংকোচন ক্রিয়ার মাধ্যমে চাপ ও তাপ বৃদ্ধি করে কভেনারে পাঠিয়ে দেয়ে।

মাল্টিস্টেজ বা কম্পাউন্ড কম্প্রেশন পদ্ধতিতে লিকুইড ইন্টারকুলার ব্যবহারের ফলে কম্প্রেসরের কাজ কম লাগে। ফলে COP বৃদ্ধি পায়।

২.৫ ওয়াটার ইন্টারকুলার এবং লিকুইড সাব-কুলার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি (Describe the two stage compression with water intercooler and liquid sub-cooler)

নিমে চিত্র ২.২ এ প্রবাহ চিত্র ও প্রেসার এনগালপি ডায়াগ্রামের সাহায্যে একটি ওয়াটার ইন্টারকুলার এবং লিকুইড সাব-কুলার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি দেখানো হল ঃ




চিত্র ঃ ২.২ ওয়াটার ইন্টার কুলার এবং লিকুইড সাব-কুলার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি

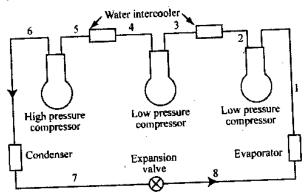
বর্ণনা ঃ লো-প্রেসার কম্প্রেসর থেকে আগত সংকৃচিত সুপারহিটেড ভেপারের তাপ কিছুটা কমানো হয়। ওয়াটার ইন্টারকুলারের সাহায্যে ভেপারের চাপ একই থাকে। এ ভেপার হিমায়ক তাপ কিছুটা হলেও সুপারহিটেড অঞ্চলে থাকে, সেচুরেটেড ভেপার লাইন স্পর্ন করে না তা আমরা P-h চার্টের 2-3 এ দেখতে পাই। ঐ হিমায়কে হাইপ্রেসার কম্প্রেসর সংকোচন ক্রিয়ার মাধ্যমে আরও বেলি সুপারহিটেড ভেপারে পরিগত করে কভেলারে পাঠায়। কম্প্রেসরে সুপারহিটেড হিমায়ক তাপ হারিয়ে তারল হিমায়ক (Liquid refrigerant) এ পরিণত হয়। ঐ তরল হিমায়ক লিকুইড সাব-কুলারের সাহায্যে তাপ হারিয়ে আরও বেশি ঠাওা হয়, যা আমরা P-h চার্টের 5-6 এ দেখতে পাই। মান্টিস্টেজ টু স্টেজ কম্প্রেশন পদ্ধতিতে ওয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলার ব্যবহারের ফলে সিস্টেমের রেক্রিজারেটিং ইফেক্ট (RE) বৃদ্ধি পায়। এর ফলে সিস্টেমের (COP) বৃদ্ধি পায়।

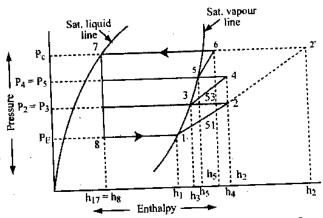
২.৬ ওয়টোর ইন্টারকুলার, লিকুইড সাব-কুলার এবং লিকুইড ফ্লাল চেমার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি (Describe the two stage compression with water inter cooler, liquid sub-cooler and liquid flash chamber) 8

নিম্নে চিত্র-২,৩ এ প্রবাহ চিত্র ও P-h ডায়াগ্রামের সাহায্যে একটি ওয়াটার ইন্টারকুলার, লিকুইড সাব-কুলার এবং লিকুইড ফ্লাশ চেম্বার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি কর্ণনা করা হল ঃ

চিত্র ঃ ২.৩ ওয়াটার ইন্টার কুলার, লিকুইড সাব-কুলার এবং লিকুইড ফ্লাশ চেঘার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি

কম্পাউড ভেপার কম্প্রেশন পদ্ধ


@ ***


46.66.1

বর্ণনা ঃ এই ডায়াগ্রামের বর্ণনা আগের ২.২ এর মত একই, শুধু পার্থক্য এখানে একটি অতিরিক্ত ফ্লাশ চেম্বার ও একটি অতিরিক্ত এক্সপানশন ভালত ব্যবহৃত হয়েছে। এর ফলে প্রথম এক্সপানশন ভালত (E_t) একটি ফ্লোট ভালত হিসেবে কাজ করে এবং ফ্লান চেম্বারের তরল হিমায়নের লিকুইড লেবেল নিয়ন্ত্রণ করে। ফ্লাশ চেম্বারে কিছু হিমায়ক বাষ্পায়নের মাধ্যমে তরল হিমায়কের তাপ কমিয়ে আরও বেশি শীতল করে, যাতে করে কুলিংকয়েল ইভাপোরেটর বেকে আরও বেশি তাপ শোষণ করতে পারে, এর ফলে সিন্টেমের (RE) বৃদ্ধি পায় তথাপি (COP) ও বৃদ্ধি পায়। ফ্লান চেমার থেকে যে হিমায়ক বাষ্পায়ন হয় সেই হিমায়ক ওয়াটার ইন্টারকুলারের পরে দুই কম্প্রেসরের মাঝখানে সুপারহিটেড লাইনে সংযুক্ত হয় এবং এ বাষ্পীয় হিমায়ক সুপারহিটেড হিমায়কের সঙ্গে মিশে সুপারহিটেড হিমায়কের তাপ আগের তাপের চেয়ে কিছুটা কমিয়ে আনে।

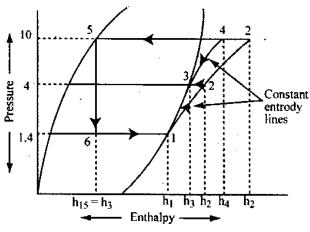
২.৭ ওয়টিার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি (Describe the three stage compression with water intercooler) 8

নিম্নে ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি প্রবাহচিত্র এবং P-h চার্টের মাধ্যমে বর্ণনা করা হল ঃ

চিত্র ৪ ২.৪ ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি

বর্ণনা ঃ লো-সাইড কম্প্রেসর থেকে পাঠানো সুপারহিটেড ডেপারকে প্রথম ওয়াটার ইন্টারকুলারের সাহায্যে তাপ ক সেচুরেটেড ভেপারে পরিণত করে ভেপারকে ইন্টারমিডিয়েট প্রেসারের কম্প্রেসরের সংকোচন ক্রিয়ার মাধ্যমে চাপ ও তাপ জ্ব বৃদ্ধি করে হাইপ্রেসার কম্প্রেসরের দিকে পাঠায়। দুই কম্প্রেসরের মধ্যে দ্বিতীয় ওয়াটার ইন্টারকুলারের সাহায্যে সুপারহি বাস্পের চাপ অপরিবর্তিত রেখে তাপ কমিয়ে সেচুরেটেড ভেপারে পরিণত করে। এ ভেপারকে হাইপ্রেসার কম্প্রেসরের মা সংকোচনের মাধ্যমে আরও চাপ ও তাপ বাড়িয়ে কন্ডেন্সারে পাঠিয়ে দেয়। কয়েল থেকে তাপ শোষণ করে ডেপার হিমায়কে প হয়ে প্রথম কম্প্রেসরে ফিরে যায়।

এর ফলে সিস্টেমের কম্প্রেসরের Word done কমে যায়। ফলে COP বৃদ্ধি পায়।


২.৮ কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতির সমস্যা সমাধান (Solve problems velating the compound vapor compression system) ঃ

উদাহরণ-২.১ ঃ একটি টু স্টেজ কম্প্রেশনে 20kg/min আমোনিয়াকে 1.4 বার (Bar) সম্পৃক্ত বাম্প হতে 10 বার (Bar) কভেনিং চাপে সংকৃতিও করতে কী পরিমাণ পাওয়ার দাগবে? ইন্টারকুলারে তরল হিমায়কের চাপ 4 Bar. ধর কভেনারে সম্পৃক্ত তরল এবং ইভাপোরেটরে সম্পৃক্ত বাম্প বের হচ্ছে। যদি ইন্টারকুলার ব্যবহার করা না হয়, তাহলে কী পরিমাণ পাওয়ার দাগবে?

(प्रधासात 🛭

দেয়া আছে, m₁ = 20 kg/min,

 $P_E = 1.4 \text{ bar}$; $P_C = 10 \text{ bar}$; $P_2 = P_3 = 4 \text{ bar}$

চিত্ৰ ঃ P-H ডায়াগ্ৰাম

চিত্রে একটি টু স্টেজ কম্প্রেশন সিস্টেম ইন্টারকুলারসহ দেখানো হল। অ্যামোনিয়ার P-h চার্ট হতে প্রাপ্ত বিভিন্ন মান নিম্নে দেয়া হল–

$$h_1 = 1400 \text{ kJ/kg}$$

$$s_1 = 5.75 \text{ kJ/kg k}$$

$$h_2 = 1527 \text{ kJ/kg}$$

$$h_3 = 11428 \text{ kJ/kg}, \quad s_3 = 5.39 \text{ kJ/kg k}$$

$$h_4 = 1550 \text{ kJ/kg}$$

ខុស្ត

तुदम

র্ণত

$$h_5 = h_6 = 248 \text{ kJ/kg}$$

আমরা জানি, কভেনার দিয়ে প্রবাহিত হিমায়কের ভর

$$m_2 = \frac{m_1(h_2 - h_{15})}{h_3 - h_{15}} = \frac{20 \; (1527 - 284)}{1428 - 284} = 21.73 \; kg/min$$

লো-প্রেসার কম্প্রেসর দ্বারা কৃতকাজ,

$$W_L = m_1 (h_2 - h_1) = 20(1527 - 1400) = 2540 \text{ kJ/min}$$

হাইপ্রেসার কম্প্রেসর দ্বারা কৃতকাজ,

$$V_{H} = m_2 (h_4 - h_3) = 2173 (1550 - 1428) = 2651 \text{ kJ/min}$$

্উভয় কম্প্রেসরের জন্য মোট কৃতকাজ,
$$W=W_L+W_H$$

$$\therefore$$
 প্রয়োজনীয় পাওয়ার = $\frac{5191}{60}$

= 86.5 kW Ans.

🔟 কম্পাউন্ত ভেপার কম্প্রেশন পদ্ধতি

ইন্টারকুলার ব্যবহার লা করে প্ররোজনীয় পাওয়ার ঃ

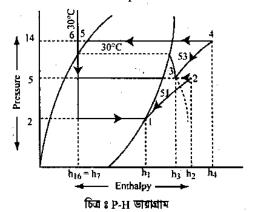
যদি ইন্টারকুলার ব্যবহার করা না হয়, তাহলে হাইপ্রেসার কম্প্রেসর 2-2' পথে কাজ করবে। সেক্ষেত্রে $h'_2=1676~{
m kJ/kg}~{
m [P-h]}$ চার্ট হতে।

- \therefore হাইপ্রেসার কম্প্রেসর দ্বারা কৃতকাজ = m_1 $(h'_2 h_2)$
- = 20 (1676 1527) = 2980 kJ/min
- ∴ মোট কাজ W = W_L + W_R = 2540 + 2980 = 5520 kJ/min
- ∴, প্রয়োজনীয় পাওয়ার = $\frac{5520}{60}$ = 92 kW. Ans.

উদাহরণ-২,২ ঃ নিম্নলিখিত ডাটাসমূহ ওয়াটার ইন্টারকুলারসহ একটি টু স্টেজ অ্যামোনিয়া কম্প্রেশন রেফ্রিজারেশন সিস্টেমের-কডেলিং প্রেসার = 14 bar; ইভাপোরেটর প্রেসার = 2 bar

ই-তারকুলার প্রেসার = 15 bar; ইভাপোরেটর লোড = 2 Tk.

যদি ডি-সুপারহিটেড বাস্প ও সাবকুলড তরল হিমায়কের তাপমাত্রা 30°C হয়, তাহলে বের কর


১। সিস্টেম পরিচালনার জন্য প্রয়োজনীয় পাওয়ার।

২। সিস্টেমের C.O.P

সমাবান
$$\mathcal{P}_{C}$$
 দেয়া আছে, $\mathcal{P}_{C}=14$ bar ; $\mathcal{P}_{E}=2$ bar ; $\mathcal{P}_{2}=\mathcal{P}_{3}=5$ bar

Q = 20 TR; $t_3 = t_6 = 30^{\circ}\text{C}$

ওয়াটার ইন্টারকুলারসহ একটি টু স্টেজ কম্প্রেশন সিস্টেমের p-h ডায়াগ্রাম নিম্নে নেয়া হল-

অ্যামোনিয়ার P-H চার্ট হতে প্রাপ্ত বিভিন্ন পয়েন্টের মানগুলো হল-

$$h_1 = 1420 \text{ kJ/kg}$$
; $s_1 = 5.62.44 \text{ kJ/kg}$ k; $h_3 = 1510 \text{ kJ/kg}$

$$s_3 = 5.24 \text{ kJ/kg k}$$
 ; $h_4 = 1672 \text{ kJ/kg}$; $h_{f6} = h_7 = 323 \text{ kJ/kg}$

 $h_2 = 1550 \text{ kJ/kg}$

১। সিস্টেম পরিচালনার জন্য প্রয়োজনীয় পাওয়ার ঃ

আমরা জানি, সিস্টেমে প্রবাহিত হিমায়কের ভর

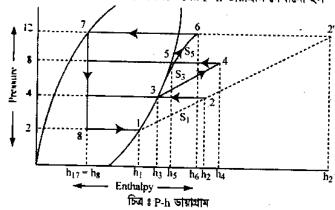
$$m = \frac{210 \text{ Q}}{h_1 - h_{f6}} = \frac{210 \times 10}{1420 - 323} = 1.91 \text{ kg/min}$$

উভয় কম্প্রেসরে মোট কৃতকাজ,

∴ প্রয়োজনীয় পাওয়ার,
$$P = \frac{557.7}{60} = 9.3 \text{ kW Ans.}$$

২ : আমরা জানি, সিস্টেমের রেফ্রিজারেটিং ইফেস্ট

$$R_E = 210Q = 210 \times 10 = 2100 \text{ kJ/min}$$


$$\therefore$$
 C.O.P = $\frac{R_E}{W} = \frac{2100}{557.7} = 3.76$ Ans.

উদাহরণ-২.৩ ৪ একটি খ্রী-স্টেজ কম্প্রেশন অ্যামোনিয়া রেক্রিজারেশন সিস্টেম 2 bar ও 12 bar চাপের মধ্যে কাজ করে। সম্পৃত অবস্থার দু'টি ওয়াটার ইন্টারকুলার হতে বের হওরা বাস্পের চাপ কথাক্রমে 4 bar এবং 8 bar বদি সিস্টেমের লোড 10 TR হর, তাহলে তিনটি কম্প্রেসর চালানোর জন্য প্রয়োজনীয় পাওরার কড়? বদি একই চাপে একটি সিম্পল রেক্রিজারেশন সিস্টেম কাজ করে, তাহলে তাদের মধ্যে C.O.P এর তুপনা কর।

সন্ধানত দেয়া আছে, $P_E = 2 \text{ bar}$; $P_C = 12 \text{ bar}$

 $P_2=P_3=4\ bar$; $P_4=P_5=8\ bar$; $Q=10\ TR$

নিম্নে ওয়াটার ইন্টারকুলারসহ একটি খ্রী-স্টেজ কম্প্রেশন সিস্টেমের P-h ভায়াঘাম দেখানো হল-

অ্যামোনিয়ার P-h চার্ট হতে প্রাপ্ত বিভিন্ন পয়েন্টের মান-

 $h_1 = 1420 \text{ kJ/kg}$; $h_2 = 1515 \text{ kJ/kg}$; $h_3 = 1442 \text{ kJ/kg}$

 $s_1 = 5.564 \text{ kJ/kg} \text{ k}$; $s_3 = 5.367 \text{ kJ/kg}$; $h_4 = 1525 \text{ kJ/kg}$

 $h_5 = 1461 \text{ kJ/kg}$; $s_5 = 5.1186 \text{ kJ/kg}$ k; $h_6 = 1500 \text{ kJ/kg}$

 $h_{f7} = h_8 = 328 \text{ kJ/kg}$

আমরা জানি, ইভাপোরেটর দিয়ে প্রবাহিত প্রয়োজনীয় হিমায়কের ভর্

$$m = \frac{210 \text{ Q}}{h_1 - h_{f7}} = \frac{210 \times 10}{1420 - 328} = 1.92 \text{ kg/min}$$

∴ তিনটি কম্প্রেসর দারা কৃতকাজ

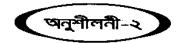
$$w = m [(h_2 - h_1) + (h_4 - h_3) + (h_6 - h_5)]$$

তিনটি কম্প্রেসর চালানোর জন্য প্রয়োজনীয় পাওয়ার

$$P = \frac{416.64}{60} = 6.94 \text{ kW Ans.}$$

আমরা জানি, রেফ্রিজারেটিং ইফেক্ট $R_{\rm E} = 210~{
m Q} = 210 \times 10 = 2100~{
m kJ/min}$

$$\therefore$$
 C.O.P = $\frac{R_E}{W} = \frac{2100}{416.64} = 5.04$


এখন একটি সিঙ্গেল রেফ্রিজারেশন সাইকেল যদি 2 bar ও 12 bar চাপে কান্ধ করে, তাহলে $h'_2=1670~{
m kJ/~kg}~[p-h$ চার্ট হতে]

∴ কৃতকাজ
$$W_1 = m (h'_2 - h_1)$$

= 1.92 (1670 – 1420)
= 480 kJ/min

এবং সিক্সেল রেফ্রিজারেশন সাইকেলের C.O.P $=\frac{R_E}{W_1}=\frac{2100}{480}=4.375$

সুতরাং সিঙ্গেল রেফ্রিজারেশন সাইকেলের সাথে তুলনা করে সিস্টেমের C.O.P বৃদ্ধি পায় = $\frac{5.04-4.375}{4.375} \times 100$ = 15.2% Ans.

কম্পাউন্ত ভেপার কম্প্রেশন পদ্ধতি

🕨 অতি সংক্ষিপ্ত প্রশ্নোতর ঃ

। কম্পাউত কম্প্রেশন পদ্ধতি বলতে কী বৃঝা।
অধবা, কম্পাউত কম্প্রেসন বলতে কী বুঝার।
অধবা, মান্টিস্টেজ কমপ্রেশন বলতে কী বুঝার।

[বাকশিবো-২০০৯]

[বাকশিবো-২০০৭,২০০৮]

[বাকাশিবো-২০০৯]

্ঠিতর বা ততোধিক কম্প্রেসর ব্যবহার করে বিভিন্ন ধাপে সংকোচন (কম্প্রেশন) করার প্রক্রিয়াকে কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতি (Compound vapor compression system) বলে। কম্পাউন্ড ভেপার কম্প্রেশন পদ্ধতিকে মান্টিস্টেঞ্জ ভেপার কম্প্রেশন পদ্ধতি বঙ্গা হয়।

২। ইন্টারকুপার কেন ব্যবহৃত হয়?

[বাকাশিবো-২০১০ (পরি)]

অথবা, হিমায়ন চক্রে ইন্টারকুলারের কাজ কী?

[বাকাশিবো-২০০৪, ২০১২]

অথবা, ইন্টারকুলার কী কাজ করে লেখ।

্[বাকাশিবো-২০১১]

অথবা, ইন্টারকুশারের কাজ কী?

[বাকাশিবো-২০১১(পরি), ২০১২(পরি)]

্রিভর ব্র এটি মান্টিস্টেজ এ দু'টি কম্প্রেসরের মাঝখানে ব্যবহৃত হয়। প্রথম কম্প্রেসর হিমায়ক সঙ্কোচন করার পর দ্বিতীয় কম্প্রেসরে নেয়ার পূর্বে কিছুটা শীতল করার জন্য ব্যবহৃত হয়।

৩। ফ্লাশ চেমারের কাজ কী?

[বাকাশিবো-২০০৪, ২০০৭, ২০০৮, ২০০৯, ২০১০, ২০১০ (পরি), ২০১৪]

অথবা, ফ্লাৰ চেমার ব্যবহার করা হয় কেন?

[বাকাশিবো-২০০৭,২০১২]

অথবা, ফ্লাশ চেদার কী?

[বাকাশিবো-২০১১ (পরি)]

অথবা, ফ্লাৰ্শ চেমারের কাজ উল্লেখ কর।

[বাকাশিবো-২০০৯]

অথবা, ফ্লাশ ট্যাংকের কাজ কী?

-[বাকাশিবো-২০০৯]

অথবা, হিমায়ন চক্রে ফ্লাশ চেদার ব্যবহারের কারণ কী?

[বাকাশিবো-২০০৪]

অথবা, ফ্রোট চেমার ব্যবহার এর কারণ কী?

[বাকাশিবো-২০০৪]

উত্তর । বাস্পীয় হিমায়ককে সরাসরি ইভাপোরেটরে না দিয়ে সরাসরি কম্প্রেসরে দেয়া। ফ্রোট চেম্বার ফ্রোট ভালভ্ হিসাবে কাজ করে এবং ফ্লাশ চেম্বারের তরল হিমায়কের লিকুইড লেবেল নিয়ন্ত্রণ করে। তরল হিমায়কের তাপ কমিয়ে আরও শীতল করে।

৪। কম্পাউভ ভ্যাপার কম্প্রেশন পদ্ধতির বাংলা অর্থ কী?

্ঠিতর 🗗 কম্পাউন্ড ভ্যাপার কম্প্রেশন পদ্ধতির বাংলা অর্থ হল− যৌগিক বাস্প সংকোচন পদ্ধতি।

৫। কম্পাউড ভ্যাপার কম্প্রেশন অপর নাম কী?

ঠিছন্স দ্র্বী কম্পাউন্ড ভ্যাপার কম্প্রেশন পদ্ধতিকে মান্টিম্ট্রেজ ভ্যাপার কম্প্রেশন পদ্ধতি বলে।

সিলেল স্টেজ কম্প্রেশনের তুলনায় ই-টারকুলার ব্যবহার করে মাল্টিস্টেজ কম্প্রেশনের সুবিধা উল্লেখ কর?

শ্রিন্তর ট্র সিঙ্গেল স্টেজ কম্প্রেশনের তুলনা ইন্টারকুলার ব্যবহার করে মান্টিস্ট্রেজ কম্প্রেশনের ২টি সুবিধা হল ঃ

১। COP বৃদ্ধি পায়।

২। আয়ঙনিক দক্ষতা বৃদ্ধি পায়।

৭। ইন্টারকুলার ব্যবহৃত হয় এমন ২টি মাল্টিন্টেজ ভ্যাপার কম্প্রেশন পদ্ধতির নাম লিখ?

ভিতর ট ইন্টারকুলার ব্যবহৃত হয় এমন ২টি মাল্টিস্টেজ ভ্যাপার কম্প্রেশন পদ্ধতির নাম হল ঃ

১। ওয়াটার ইন্টারকুলার দুই ধাপে সংকোচন পদ্ধতি।

২। ফ্লাশ ইন্টারকুলার ব্যবহৃত তিনধাপে সংকোচন পদ্ধতি।

কম্পত্তিত ভেপার কম্প্রেশন পদ ===

- b। মান্টিস্টেজ বা কম্পাউড কম্প্রেশন পদ্ধতিতে নিকুইড ইন্টারকুলার ব্যবহারের সুবিধা কী?
 - ্ঠিতর ট্র মাল্টিস্টেজ বা কম্পাউন্ড কম্প্রেশন পদ্ধতিতে লিকুইড ইন্টারকুলার ব্যবহারের ফলে কম্প্রেসরের কাজ কম লাগে ফলে COP বৃদ্ধি পায়।
- ১। মান্টিস্টেজ টু-স্টেজ কম্প্রেশন পদ্ধতিতে ওয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলার ব্যবহারের ফলে সিস্টেমে কী ঘটে? অথবা, মান্টিস্টেজ কম্প্রেশনে ওয়াটার ইন্টারকুলার কেন ব্যবহার করা হয়?

্ঠিন্তর জ্ব মান্টিস্টেজ টু-স্টেজ কম্প্রেশন পদ্ধতিতে প্রয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলার বাবহারের ফলে সিস্টেমের রেফ্রিজারেটিং ইফেক্ট (R. E) বেড়ে যায় ফলে সিস্টেমের COP বৃদ্ধি পায়।

১০। সাব-কুলভ লিকুইভ বলতে কী কুঝার?

[বাকাশিবো-২০০৯, ২০১৫(পরি)]

্ঠিতর 🕑 তরল হিমায়ককে তাল হারিরে আর বেশি ঠাজা বার ধারা সম্পন্ন করা হয়, তাকে সাব-কুলড শিকুইড বলে।

১১। ইউটেকটিক **ফু**ইডের ব্যবহার দিব।

[বাকাশিবো-২০০৯] ু

<u>ভিত্তর ব্রু ইউটেকটিক প্রেটের সর্বোচ্চ দক্ষতা নিশ্চিত করার জন্য ইউটেকটিক ফুইড ব্যবহার করা হয়।</u>

১২। ফ্লান গ্যাস বলতে की বুঝার?

[বাকাশিবো-২০০৪, ২০০৭]

ত্রভার ক্লাল চেমারে কিছু হিমায়ক বাস্পায়নের মাধ্যমে ওরল হিমায়কের তাপ কমিয়ে আরও দীতল করে, যাতে কুলিং কয়েল ইভাপোরেটর থেকে আরও বেলি তাপ শোষণ করে করতে পারে, এই বাষ্পায়ন হিমায়নকে ফ্লাল গ্যাস বলে।

🕦 সংক্ষিদ্ত প্রস্লোন্তর ঃ

ইন্টারকুলার ব্যবহৃত কম্পাউন্ত ভেপার কম্প্রেসর পদ্ধতির সৃবিধাসমূহ লিখ।
 অথবা, সিঙ্কেল স্টেঞ্জ অপেক্ষা মাল্টিন্টেজ কম্প্রেশন পদ্ধতির সৃবিধান্তলি লিখ।

[বাকাশিবো-২০০৯]

ভিতর 🔊 ইন্টারকুলার ব্যবহার করে মান্টিস্টেজ কম্প্রেশনের সুবিধাগুলো বর্ণনা করা হল-

- ১। প্রতি কেজি রেফ্রিজারেন্ট সংকোচন করতে কম্প্রেসর কর্তৃক কাজ সিঙ্গেল স্টেজের তুলনায় কম লাগে।
- ২। আয়তনিক দক্ষতা বৃদ্ধি পায়।
- ৩। তুলনামূলকভাবে লিকেজ লস কম হয়_।
- ৪। মেহেতু এটি সমমানের টর্ক সরবরাহ করে, ফলে ছোট আকারের ফ্লাই-ছইল প্রয়োজন হয়।
- ৫। কম তাপমাত্রার কারণে সঠিকভাবে শুব্রিকেশন সম্পন্ন হয়।
- ৬। কম্প্রেসরের ব্যয় কমায়।
- ९। COP वृक्ति शाम्र ।

ইন্টারকুলার ব্যবহৃত মান্টিন্টেজ বা কম্পাউত কম্প্রেশন পদ্ধতিতলো কী কী?

্ঠিতর ট ইন্টারকুলার ব্যবহৃত বিভিন্ন মান্টিন্টেজ ভেপার কন্পেশন পদ্ধতি দেয়া হল-

- ১। লিকুইড ইন্টারকুলার ব্যবহৃত দুই ধাপে সংকোচন (Two stage compression)।
- ২। ওয়াটার ইন্টারকুলার দুই ধাপে সংকোচন।
- ৩। ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার এবং লিকুইড ফ্লান চেম্বার ব্যবস্কৃত দু'ধাপে সংকোচন।
- ৪। ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার একং ফ্লাল ইন্টারকুলার ব্যবদ্ধত দু'ধাপে সংকোচন।
- ৫। ফ্লাস ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।
- ৬। ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।
- ৭। ফ্লাশ চেম্বার ইন্টারকুলার ব্যবস্তুত তিন ধাপে সংকোচন পদ্ধতি।

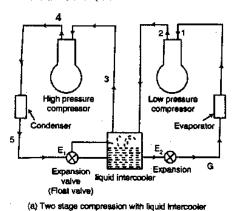
াডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং–৮

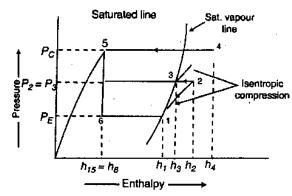
কম্পাউন

91

একটি ফ্লান চেদারসহ ভেপার কম্প্রেশন রেফ্রিজারেশন পদ্ধতির প্রবাহচিত্র অন্ধন কর। অপবা, ফ্রোট চেমার ব্যবহার এর কারণ কী?

[বাঞ্চাশিবো-২০০৪]

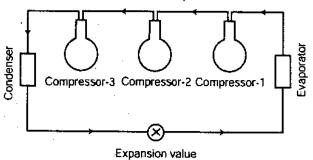

[বাকাশিবো-২০০৯


[বাকাশিবো-২০০১

📴 🗷 🗗 ফ্রোট চেম্বার ফোটণ ভালভ্ হিসাবে কাজ করে এবং ফ্রাশ চেমারের তরল হিমায়কের লিকুইড লেবেল নিয়ন্ত্রণ করে। তরল হিমায়কের তাপ কমিয়ে আরও শীতল করে।

লিকুইড ইন্টারকুলারসহ টু-স্টেজ কম্প্রেশন সিস্টেমের বর্ণনা দাও [বাকাশিবো-২০০৩, ০৫, ০৬, ০৭, ১২, ২০১১(পরি), ১৪] অধবা, ওরাটার ইন্টারকুলার ব্যবহৃত দুই বাপের বাল্প সংকোচন পদ্ধতির প্রবাহ চিত্র অন্তন কর। বাকাশিবো-২০০৪, ১৪] ಶিছর 🛮 নিমে একটি লিকুইড ইন্টারকুলার ব্যবহাড টু স্টেজ কম্প্রেশন পদ্ধতির প্রবাহ চিত্র এবং প্রেসার এনথালপি

ভায়াগ্রাম দেয়া হল।



লিকুইড ইন্টার কুলারসহ বাস্প সংকোচন পদ্ধতি

বর্ণনা ঃ প্রপমে লো-প্রেসার কম্প্রেসর **থেকে সংকৃ**চিত সুপারহিটেড ভেপার লিকুইড ইন্টারকুলারে পাঠায়। অপরদিকে কভেন্সার থেকে আগত তরল হিমায়ক এক্সপানশন ভাল্ভ (E_i) ঘারা প্রবাহ নিয়ন্ত্রিত হয়ে লিকুইড ইন্টারকুলারে আসে। এক্সপানশন ভালভ (E_1) মূলত প্রোটল ভালভ হিসাবে কাজ করে ইন্টারকুলারে একটি নির্দিষ্ট লিকুইড লেবেন্দ বজায় রাখে লিকুইড ইন্টারকুলারে তরল হিমায়ক আংশিক বাম্পায়নের মাধ্যমে লো-প্রেসার কম্প্রেসর থেকে আগত সুপারহিটেড হিমায়ককে কিছুটা শীতল করে একই চাপে সেচুরেটেড ডেপার হিমায়কে পরিণত করার পর হাইপ্রেসার কম্প্রেসরে প্রেরণ করে। হাইপ্রেসার কম্প্রেসর লিকুইড ইন্টারকুলার থেকে আগত বাস্পায়িত হিমায়ককে সংকোচন ক্রিয়ার মাধ্যমে চাপ ও তাপ বৃদ্ধি করে কভেঙ্গারে পাঠিয়ে দেয় :

.মান্টিস্টেজ বা কম্পাউড কম্প্রেশন পদ্ধতিতে লিকুইড **ইন্টারকুলার ব্যবহারের ফলে কম্প্রেসরের কা**জ কম লাগে। ফলে COP বৃদ্ধি পায়।

একটি মান্টিস্টেজ কম্প্রেশন হিমারদ চক্র অঙ্কন কর। [বাকাশিবো-২০০৭, ২০১২, ২০১১(পরি), ২০১৪] অধবা, ভেপার কম্প্রেশন সিস্টেমের ভারামাম অঙ্কনপূর্বক বিভিন্ন অংশ চিহ্নিভ কর। অপবা, একটি মান্টিন্টেজ সিন্টেমের প্রবাহচিত্র অঙ্কন করে বিভিন্ন অংশ চিহ্নিড কর।

চিত্র ঃ মান্টিস্টেঞ্জ কম্প্রেশন হিমায়ন চক্র

কম্পাউন্ড ডেপার কম্প্রেশন পদ্ধতি

৬। <mark>নিম্ন তালমাত্রা উৎপাদনের ক্ষেত্রে ভ্যাপার *ক্ষম্বেশন রেক্রিজারেশন সিস্টেমের সীমাবদ্ধতাগলো লেব*। [বাকালিবো-২০১২ (পরি)]</mark>

😎 হর 🗿 নিমু তাপমাত্রা উৎপাদনের ক্ষেত্রে ভ্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের সীমাবদ্ধতা নিমুরূপ ঃ

- hoা খুব নিমুমানের হিমাংক বিশিষ্ট Refrigerant-এর অভাব। যেমন R-11 এর Freezing temperature হচ্ছে— 11° C এবং R ~ 12 এর 158° C.
- ২। Specific Uolume খুব বেশি হয়ে যায় ফলে System-এর আকার বড় হয়ে যায়।
- ৩। উচ্চমানের Compressor-এর প্রয়োজন হয় ফলে COP-এর মান কমে যায়।
- ৭। ভেপার কম্পাউভ কম্প্রেশন রেক্টিজারেশন পদ্ধতির সুবিধান্তলো লেব। অথবা, মান্টি-ইভাপোরেটর সিস্টেমের অসুবিধান্তলো লেব। অথবা, মান্টি-ইভাপোরেটর সিস্টেমের দুইটি সুবিধা ও অসুবিধা লেব। অথবা, মান্টিস্টেজ কম্প্রেশনে ওয়াটার ইন্টারকুলার কেন ব্যবহার করা হয়? অথবা, মান্টি স্টেজ কম্প্রেশন সিটেমের সুবিধা ও অসুবিধান্তলো লিব।

[বাকাশিবো-২০০৯, ২০১১]

[বাকাশিবো-২০১৫(পব্লি)]

[বাকাশিবো-২০০৯, ২০১০(পরি)]

[বাকাশিবো-২০০৮]

[বাকাশিবো-২০০৩, ০৫, ০৬, ০৭]

অথবা, ডেভার কম্প্রেশন সাইকেন্স সাব-কুন্ড ও সুপার হিটের সুবিধা অসুবিধাওলো লিব।

[বাকাশিবো-২০০৪]

অথবা, কম্পাউড কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাওলো লেব ।

[বাকাশিবো-২০০৯]

ভিতর স্থা বিধা ঃ নিমে সিক্ষেল স্টেজ কম্প্রেশনের তুলনা ইন্টারকুলার ব্যবহার করে মাল্টিস্টেজ কম্প্রেশনের সুবিধাগুলো বর্ণনা করা হল–

- ১। প্রতি কেন্তি রেফ্রিজারেন্ট সংকোচন করতে কম্প্রেসর কর্তৃক কাজ সিঙ্গেল স্টেজের তুলনায় কম লাগে।
- ২। আয়তনিক দক্ষতা বৃদ্ধি পায়।
- ৩। তুলনামূলকভাবে লিকেজ লস কম হয়।
- ৪। যেহেতু এটি সমমানের টর্ক সরবরাহ করে, ফলে ছোট আকারের ফ্লাই-ছুইল প্রয়োজন হয়।
- ৫। কম তাপমাত্রার কারণে সঠিকভাবে সূত্রিকেশন সম্পন্ন হয়।
- ৬। কম্প্রেসরের ব্যয় কমায়।
- ৭। COP বৃদ্ধি পায়।

অসুবিধা ঃ

- ১। পুব নিমুমানের হিমাংক বিশিষ্ট হিমায়কের অভাব।
- আপেক্ষিক আয়তন খুব বেশি হয়ে যায় ফলে সিস্টেম-এর আকার বড় হয় ;
- ৩। সো-বয়েলিং টেস্পারেচার বিশিষ্ট রেফ্রিজারেন্ট এর জন্য ঘনিভবনের চাপও বেশি রাখতে হয় যা সিস্টেম-এর জন্য ঝুঁকিপূর্ণ।

বাকাশিবো-২০০৯

😎 🖅 🖟 নিমু তাপুমাত্রার হিমায়নের ব্যবহার ক্ষেত্রতলো নিমুরূপ ঃ

- ১। সলিড কার্বন ডাই-অক্সাইড
- । বিভিন্ন প্রকার গ্যাস তর্নীকরণে
- ৩। আইসক্রীম ফ্যার্ট্ররিতে
- ৪ ৷ ঔষধ শিল্পে
- ৫। বাঁড়ের শুক্র সংরক্ষণে
- ⊎ | Computer
- ৭। বায়ু তরলীকরণে।

কম্পাটন্ড তেপার কম্প্রেশন পদ্ধতি

>> त्रष्ठवाशृतक श्रन्नावितः

১। লিকুইড ইন্টারকুলার ব্যবহৃত দু'থাপে সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর। অথবা, লিকুইড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিস্টেম চিত্রে দেখাও।

<mark>উত্তর সম্বক্তে ৪</mark>) অনুচেছদ ২.৩ নং দ্রষ্টব্য ।

ওয়াটার ইন্টারকুলার এবং লিকুইড সাবকুলার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি বর্ণনা কর।

অথবা, ওয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলারযুক্ত একটি টু স্টেজ কম্প্রেশন পদ্ধতি প্রবাহচিত্র ও p-h ভায়াগ্রামসহ
বর্ণনা কর।

[বাকাশিবো-২০০৯]

<mark>উত্তর সংক্তেত</mark> অনুচেছদ ২.৫ নং দুটব্য।

ওয়াটার ইন্টারকুলার, লিকুইড সাব ্রুপার এবং লিকুইড ফ্লাশ চেমার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর। অথবা, ওয়াটার ইন্টার কুলার লিকুইড সারকুলার এবং ফ্লাশ ইন্টারকুলারবুড টু সেটজ কম্প্রেশন পদ্ধতির প্রবাহচিত্র ও P-H ভার্ম্লাম অংকন কর।

ঠতন সমকেত ভ অনুচেছদ ২.৬ নং দ্ৰষ্টব্য।

8। ধরাটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন গছতি বর্ণনা কর।
অথবা, ধরাটার ইন্টারকুলারসহ খ্রীস্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রধাদি চিত্রসহ বর্গনা কর।

[বাকাশিবো-২০০৩, ০৫, ০৭, ১০, ১১(পব্নি), ১২(পরি), ১৫(পরি)]

ক্তিরর সংক্রেক্ত 🔊 অনুচেছদ ২.৭ নং দ্রষ্টব্য ।

৫। C.O.P বৃদ্ধির উপায়তলো চিত্রসহ ব্যাখ্যা কর।

🕏 হর সহক্রেড 🖁 ২.৫ ও ২.৬ নং অনুচ্ছেদ দ্রষ্টব্য।

পলিটেকনিকের সকল বই ডাওনলোড করতে ভিজিটঃ

www.BDeBooks.Com/polytechnic

কম্পাউড ভেপার কম্প্রেশন পদ্ধতি

একাধিক ইভাপোৱেটর ১ কল্মেসর ব্যবহাত গ্রেপার কল্পেশন পদ্ধতি (Vapor Compression system with multiple evaporator and compressor)

৩.০ ভূমিকা (Introduction) 8

কম্প্রেসর, ইভাপোরেটর থেকে নিমু চাপের বাষ্প টেনে নেয় এবং সংকোচন করে কন্ডেন্সারে প্রেরণ করে। হিমায়ক ইভাপোরেটর p থেকে কন্ডেন্সারে যাওয়ার পথে যদি একবার সংকোচিত হয়, তাহলে তাকে সিন্দেল স্টেজ কম্প্রেনন (Single stage compression) বলে, সংকোচন দুবার হলে তাকে টু-স্টেজ কম্প্রেনন (Two stage compression) বলে এবং সংকোচন তিনবার হলে তাকে প্র-স্টেজ (Three stage compression) কম্প্রেনন বলে।

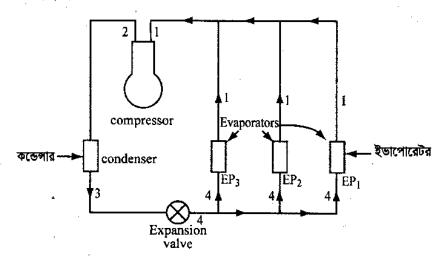
একটি হিমায়ন চক্র সম্পূর্ণ করতে যদি হিমায়ককে একের অধিক সংকোচন করা হয়, তাহলে তাকে মান্টিস্টেজ বা কম্পাউড় কম্প্রেশন (Maltistage or compound compression) পদ্ধতি বলে ৷

ইভাপোরেটর হিমায়কের চাপ যত হ্রাস পায় হিমায়ন (Refrigeration) চক্রের ক্ষমতা (Capacity) ও দক্ষতা তত হ্রাস পায়। যা P-H চার্টে সত্যতা মিলে। ইভাপোরেটরে চাপ যত কম হয় কম্প্রেশন রেশিও (Compression ratio) তত বৃদ্ধি পায়। ফলে কম্প্রেসারের ক্ষমতা হ্রাস পায়। ইভাপোরেটরে চাপ যত হ্রাস পায় কম্প্রেসারে ডিসচার্জ তাপমাত্রা (Discharge temperature) তত বৃদ্ধি পায়। আলোচ্য অধ্যায়ে মান্টিপল ইভাপোরেটর এবং কম্প্রেসারের ওরুত্ব, বিভিন্ন ধরনের মান্টিপল ইভাপোরেটর এবং কম্প্রেশন পদ্ধতি, লো-টেম্পারেচারের ক্ষেত্রে ক্যাসকেড সিস্টেম, একক ও পৃথক ভাবে মান্টিপল ইভাপোরেটরসহ কম্প্রেশন পদ্ধতি ইত্যাদি সম্পর্কে বিস্তারিত জানা যাবে।

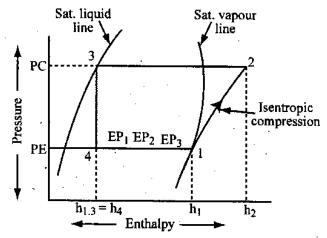
৩.১ একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতির গুরুত্ব (Outling the importance of vapor compression system with multiple evaporators and compressors) ঃ

আমরা পূর্বের অধ্যায়ে একটি ইভাপোরেটর ব্যবহৃত পদ্ধতি নিয়ে আলোচনা করেছি। যেখানে একটি ইভাপোরেটর দ্বারা একটি কন্দের তাপমাত্রা নিয়ন্ত্রণ করা যায়। কিন্তু অনেক রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশনিং প্ল্যান্ট আছে একাধিক কন্দ্রে একই তাপমাত্রা অথবা একাধিক কন্দ্রে আলাদা তাপমাত্রা ও আর্দ্রতা নিয়ন্ত্রণ করার প্রয়োজন হয়। আবার একাধিক কন্প্রেসর ব্যবহৃত প্ল্যান্টে একটি কন্দেশার ও একাধিক ইভাপোরেটর ব্যবহৃত হয়। উদাহরণন্বরপ একটি কোন্ড স্টোরেজ এর কথা ধরা যাক, যেখানে তিনটি স্টোরেজ কন্দ্রে একই তাপমাত্রায় ও আর্দ্রতায় বিভিন্ন খাদ্যন্ত্র্ব্য অথবা প্রতিটি কন্দ্রে ভিন্ন তাপমাত্রায় ও আর্দ্রতায় খাদ্যন্ত্র্ব্য সংরক্ষণ করতে হয়। ঐ সমন্ত স্থানে একাধিক ইভাপোরেটর ও কন্দ্রেসর ব্যবহার করে স্বিধা পাওয়া যায়।

৩.২ একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভ্যাপার কম্প্রেশন পদ্ধতির প্রকারভেদ (Mention the different types of multiple evaporators and compressors systems) 8


একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত জ্যাপার কম্প্রেশন পদ্ধতির প্রকারভেদ নিয়ে দেয়া হল ঃ

- ১। একই তাপমাত্রায় একটি কম্প্রেসর ও একটি এক্সপানশন ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ২। বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, আলাদা আলাদা এক্সপানশন ডাল্ভ, ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ৩। বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাল্ড, ব্যাকপ্রেসার ভাল্ড এবং একাধিক ইভাপোরেটর ব্যবহৃত সিস্টেম।
- 8। বিভিন্ন তাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর, এক্সপানশন ভাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ৫। বিভিন্ন তাপমাত্রায় একাধিক এক্সপানশন ভাল্ভ, ভিন্ন ভিন্ন কম্প্রেসর ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ৬। বিভিন্ন তাপমাত্রায় একাধিক কম্প্রেসর, ভিন্ন ভিন্ন এক্সপানশন ভাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।

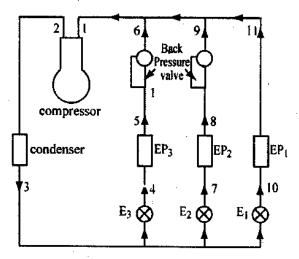

একাধিক ইভাপোরেচর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধায

৩.৩ একই তাপমাত্রায় একটি কম্প্রেসর একটি এক্সপানশন ভাগ্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporator at same temperature with single compressor and expansion valve) \$

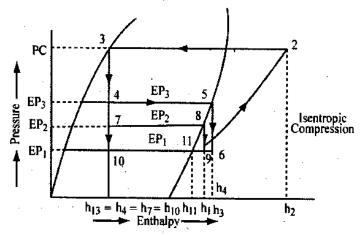
একই তাপমাত্রায় একটি কম্প্রেসর একটি এক্সপানশন ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতির ফ্লো ডায়াগ্রাম ও P-h ডায়াগ্রামসহ বর্ণনা দেয়া হল ঃ

(a) Multiple evaporators at the same temperature with single compresor and expansion valve.

চিত্র ঃ ৩.১ একাধিক ইভাপোরেটর যুক্ত হিমায়ন পদ্ধতি


বর্ণনা s এ পদ্ধতিতে তিনটি ভিন্ন কক্ষ বা চেম্বার থাকে এবং তিনটি কক্ষে চেম্বারের প্রতিটিতে একটি করে ইভাপোরেটর বসানো থাকে। প্রতিটি কক্ষে একই তাপমাত্রা থাকে। আলাদা চেম্বার হওয়ার কারণে এক চেম্বারের থাবারের গদ্ধ অন্য চেম্বারে যাবে মা। তিনটি চেম্বারের সংযুক্ত শোষণকৃত তাপই রেফ্রিজারেশন ইফেক্ট বা P-h ভায়াগ্রাম h_i - h_i ঘারা দেম্বানো হয়েছে।

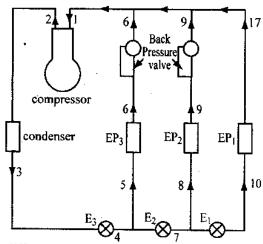
এ তিনটি চেমারের হিমায়ক সংযুক্ত হয়ে কম্প্রেসরে ফিরে যায় বা কম্প্রেসর টেনে নেয় তা আবার সংকোচন ক্রিয়ার মাধ্যমে কম্প্রেসরে যায়, সেখান থেকে ঘনীভবন হয়ে এক্সপানশন ভালভের মাধ্যমে প্রেসার ড্রপ হয়ে ইভাপোরেটার যায় এভাবে চলতে থাকে।


্র একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি

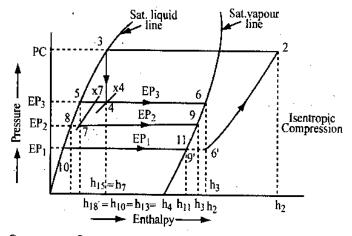
৩.৪ বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাস্ভ ও ব্যাকপ্রেসার ভাস্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporators at different temperature with single compressor individual expansion valve and back pressure valve) 8

বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর ভিন্ন ঙিন্ন এক্সপানশন ভাল্ভ ও ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতির ফ্লো ডায়াগ্রাম এবং P-h ডায়াগ্রামসহ বর্ণনা নিম্নে দেয়া হল ঃ

(a) Multiple evaporators at different temperatures with single compressor, individual expansion valves and back pressure valves.



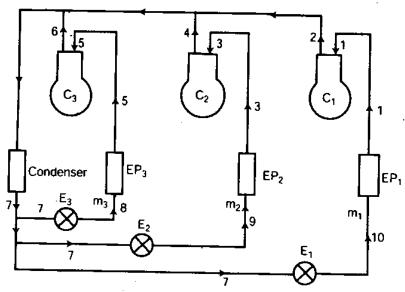
চিত্র ঃ ৩.২ ভিন্ন তাপমাত্রা ও একাধিক ইভাপোরেটর সম্বলিত বাস্প সংকোচন প্রণালি


বর্ণনা \sharp এ পদ্ধতিতে কন্ডেন্সারের পরে তিনটি ভিন্ন কক্ষের জন্য পৃথক তিনটি এক্সপানশন ভাল্ভ ও ইভাপোরেটর থাকে। এক্সপানশন ভাল্ভ E_1 , E_2 , E_3 হিমায়কের চাপ কমিয়ে (প্রেসার ড্রপ করে) ইভাপোরেটরে পাঠায়। ইভাপোরেটর EP_1 , EP_2 ও EP_3 এর চাপের পার্থক্য থাকায় চাপের ক্ষমতা আনার জন্য ইভাপোরেটর EP_2 ও EP_3 এর পরে ব্যাকপ্রেসার ভাল্ভ বসানো থাকে, যা উপরের চিত্র ও P_2 ৮ ডায়াগ্রামে পেয়া আছে।

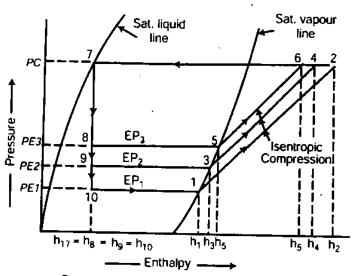
এ পদ্ধতিতে প্রতিটি কক্ষে ভিন্ন দ্রুল তাপমাত্রা নিয়ন্ত্রণ করা যায়। প্রতিটি কক্ষে বা চেম্বারে বিভিন্ন প্রকার খাদদ্রেব্য সামগ্রী সংরক্ষণ করা যায়। ৩.৫ বিভিন্ন তাপমান্তায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাশৃভ ও ব্যাকপ্রেসার ভাশৃভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporator at different temperature with single compressor, multiple expansion and back pressure valve) &

বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর একাধিক এক্সপানশন ভাল্ভ ও ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতির প্রবাহচিত্র ও P-h ভায়াগ্রামসহ নিয়ে বর্ণনা করা হল ঃ

(a) Multiple evaporators at different temperatures with single compressor, individual expansion valves and back pressure valves.



চিত্ৰ ঃ ৩.৩ একাধিক এক্সাপানশন ভাল্প সদলিত বাষ্প সংকোচন প্ৰণালি

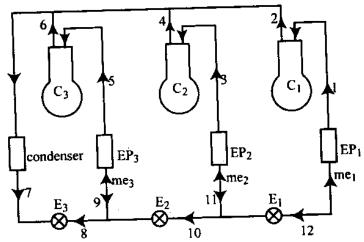

বর্ণনা ঃ এ পদ্ধতিতে কন্ডেন্সার থেকে আগত তরল হিমায়ক এক্সপানশন ভাল্ভ E_3 এর মাধ্যমে প্রেসার ড্রপ করে তরল হিমায়ক EP_3 এর চাহিদা অনুযায়ী পর্যাপ্ত হিমায়ক প্রেরণ করে এবং অবশিষ্ট তরল হিমায়ক আরও কিছুটা শীতল হয় বাল্পায়নের মাধ্যমে। এরপর এক্সপানশন ভাল্ভ E_2 এর মাধ্যমে আরও চাপ কমিয়ে তরল হিমায়ক পাঠানো হয়, সেখান থেকে EP_3 ইভাপোরেটরের চাহিদা অনুযায়ী পাঠানো হয় এবং পরে অবশিষ্ট হিমায়ক এক্সপানশন ভাল্ভ E_1 এর মাধ্যমে আরও প্রেসার ড্রপ করে পাঠানো হয়। ব্যাকপ্রেসার ভাল্ভ ব্যবহারের কারণ পূর্বেই জেনেছি।

৩.৬ বিভিন্ন ভাগমাত্রায় ভিন্ন ভিন্ন কম্পোনশন ভাগ্ড ও ইভাগোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporators at different temperature with individual compressor and individual expansion valve) ঃ

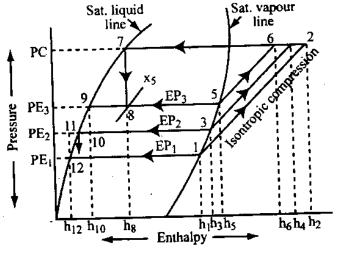
বিভিন্ন তাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর, এক্সপানশন ভাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতির প্রবাহচিত্র ও P-h ডায়াগ্রামসহ নিম্নে বর্গনা করা হল ঃ

(a) Multiple evaporators at different temperature with individual compressors, and individual expansion valves.

চিত্র ঃ ৩.৪ পৃথক কম্প্রেসর সম্পাত বাস্প সংকোচন প্রণালি


বর্শনা ঃ এ পদ্ধতিতে কন্ডেলার থেকে আগত হিমায়ক তিনটি লাইনে ভাগ হয়ে আলাদা এক্সপানশন ভাল্ভ ও ইভাপোরেটর হতে তাপ শোষণ করে হিমায়ক কম্প্রেসরে কিরে আসে। তিনটি কম্প্রেসরই সংকোচন ক্রিয়ার মাধ্যমে চাপ ও তাপ বাড়িয়ে আবার কন্ডেলারে পাঠিয়ে দেয়। এ পদ্ধতিতে আলাদা আলাদা কন্ধে ভিন্ন তাপমাত্রায় নিয়ন্ত্রণ করা যায়।

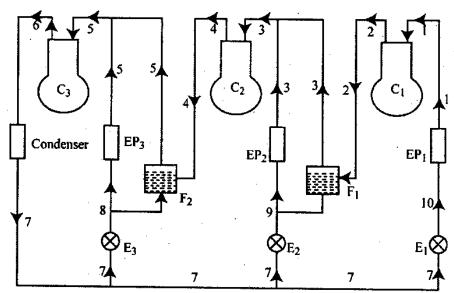
আডভাদড রেক্রিক্সারেশন অ্যান্ড এয়ারকভিশনিং–৯


📘 একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার ক্ষ্পেশন পদ্ধতি

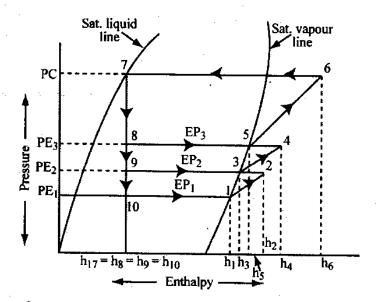
৩.৭ বিভিন্ন তাপমাত্রার একাধিক এক্সপানশন ভাস্ত ভিন্ন ভিন্ন কম্প্রেসর ও ইতাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporators at different temperature with individual compressor and multiple expansion valves) 8

বিভিন্ন তামমাত্রায় একাধিক এক্সপানশন ভাল্ড ভিন্ন ভিন্ন কম্প্রেসর ও ইভাপোরেটর ব্যবহৃত পদ্ধতির প্রবাহ চিত্র ও P-h ডায়াগ্রামের মাধ্যমে নিম্নে দেখানো হল ঃ

(a) Multiple evaporators at different temperatures with individual compressors and multiple expansion valves.



চিত্র ঃ ৩.৫ একাধিক কম্প্রেসর এক্সপানশন ডিভাইন এবং ইণ্ডাপোরেটর সম্বলিও বাস্প সংকোচন পদ্ধতি

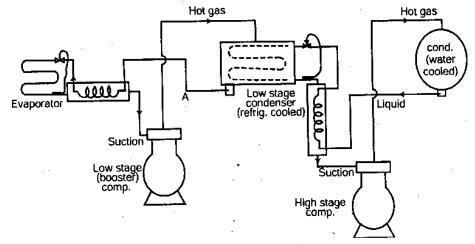

এ পদ্ধতিতে কভেনারের পরে এক্সপানশন ভাল্ভ E_3 প্রেসার দ্রপ করে কিছু হিমায়ক ইভাপোরেটর EP_3 দিয়ে কম্প্রসর C_3 তে যায়। অবশিষ্ট হিমায়ক E_2 এর মাধ্যমে আবার প্রেসার দ্রপ হয়ে কিছু হিমায়ক EP_2 দিয়ে C_2 এবং অবশিষ্ট হিমায়ক E_1 এর মাধ্যমে প্রেসার দ্রপ হয়ে EP_2 দিয়ে EP_3 দিয়ে EP_4 দেয়ে। এভাবে চক্রটি চলতে থাকে।

৩.৮ বিভিন্ন ভাপমান্তার একাধিক কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাল্ভ ও ইভাপোরেটর ও ফ্রান্স ইন্টারকুলার ব্যবহাত পদ্ধতি (Describe the multiple evaporators at different temperatures with compound compressor, individual expanssion valve and flash intercooling) ?

বিভিন্ন তাপমান্তায় একাধিক কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাল্ড ও ইভাপোরেটর ও ফ্লাশ ইন্টারকুলার ব্যবহৃত পদ্ধতির প্রবাহচিত্র ও P-h ভায়াগ্রামের মাধ্যমে নিয়ে দেয়া হল ঃ

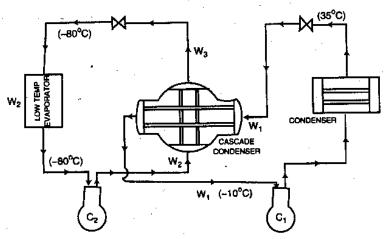
(a) Multiple evaporators at different remperatures with compound compression, individual expansion valves and flash intercoolers.

চিত্র ঃ ৩.৬ ফ্লাশ ইন্টার কুলার সম্বলিত বিভিন্ন তাপমাত্রায় বাষ্প সংকোচন পদ্ধতি

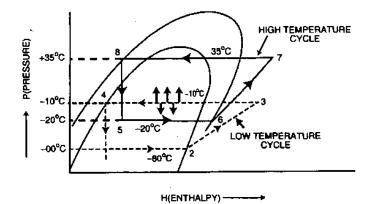

একাধিক ইঙাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি

৩.৯ লো টেম্পারেচার রেফ্রিজারেশনে ক্যাসকেড সিস্টেমের বর্ণনা (Descirbe the cascade system of low temperature refrigeration) 8

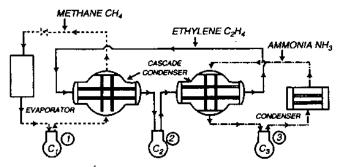
আমরা জানি যে, (- 40)° সেঃ তাপমাত্রার নিচে সিঙ্গেল স্টেজ কম্প্রেশন পদ্ধতি ব্যবহার লাভজনক নয়। হিমায়কের হিমাঙ্কের জন্য মাল্টিস্টেজ ব্যবহার করেও একটি নির্দিষ্ট তাপমাত্রার নিচে হিমায়ন সম্ভব নয়। যেমন— অ্যামোনিয়ার হিমাঙ্ক (- 77.8)° সেঃ। সূতরাং বায়ুমগুলীয় চাপে সিঙ্গেল বা মাল্টিস্টেজ ব্যবহার করেও (- 77.8)° সেঃ নিচে হিমায়ন সম্ভব নয়। এর চেয়ে নিচু তাপমাত্রার হিমায়নের জন্য আরও নিচু হিমাঙ্কের হিমায়ক ব্যবহাত হয়। নিচের হিমায়কগুলোর হিমায়কের দিকে তাকালে নিমু তাপমাত্রার একটি সীমাবদ্ধতা দেখা যাবে—

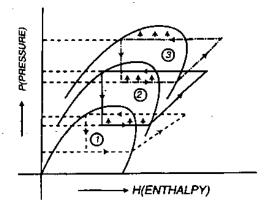

হিমায়ক	R-12	R-22	R-113	R-502	NH ₃	502	CO ₂
হিমাক সেঃ	- 157.8	- 160	-35	_	- 77.8	- 75.6	- 56.7

বিভিন্ন দিক বিশ্লেষণ ও পর্যালোচনা করে দেখা যায় যে, অতি নিমুতাপমাত্রায় ক্যাস্কেড সিস্টেম অধিক উপযোগী। ১৮৭৭ সালে পিক্টেট (Picktet) অক্সিজেনকে তরল করার জন্য ক্যাসকেড সিস্টেমের উদ্ভব করেন।


চিত্ৰ ৪ ৩.৭ খি-চক্ৰ বিশিষ্ট ক্যাসকেড সিস্টেম

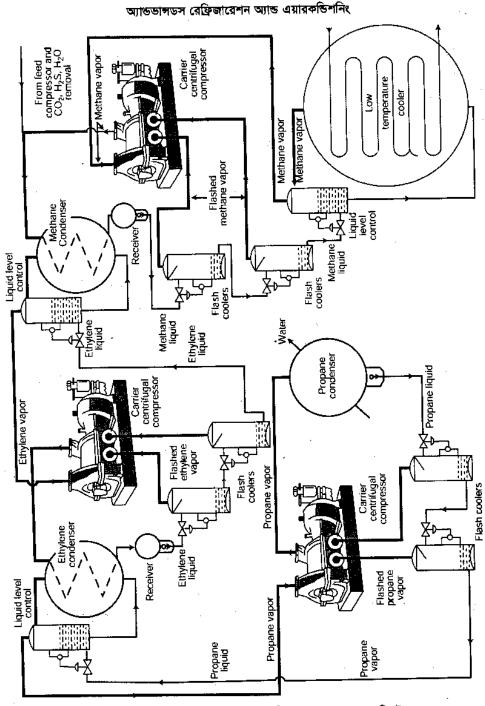
ক্যাসকেও সিস্টেমে দুই বা ততাধিক হিমায়ন চক্র মিলিত হয়ে একটি নিচু তাপমাত্রার সৃষ্টি করে। এক্ষেত্রে একটি ইভাপোরেটর অন্য একটি কভেনারকে ঠাণ্ডা করে। নিমু তাপমাত্রার হিমায়ন চক্রে ব্যবহৃত কভেনারকে ক্যাসকেও কভেনার (Cascade condenser) বলে এবং হাই স্টেজের ইভাপোরেটর বলে, আসলে ইহা একটা তাপ বিনিময়কারী বা Heat exchanger। এ সময় দুই বা ততোধিক হিমায়ক ব্যবহৃত হয়।




একাধিক ইভাগোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি

একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি

চিত্ৰ ঃ ৩.৮ ছি-খাপ বিশিষ্ট ক্যাসকেড সিস্টেম (Two stage cascade system)



চিত্র ঃ ৩.৯ ডিন ধাপ বিশিষ্ট ক্যাসকেড সিস্টেম

ক্যাসকেড সিস্টেম হিমায়কের একটি সেট হল মিথাইল ক্লোরাইড, ইথিলিন এবং অক্সিছেন (Methyle chloride, ethylene and oxygen); অ্যামোনিয়া, ইথিলিন, মিথেন এবং নাইট্রোজেন (Ammonia, ethylene, methane & nitrogen).

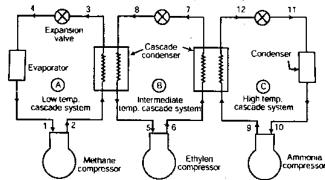
সুবিধা ঃ ক্যাসকেড সিস্টেম ব্যবহারে নিমুলিখিত সুবিধান্তলো পাওয়া যায়—

- ১। ক্যাসকেড সিস্টেমের দুই বা ততোধিক হিমায়ন চক্রই সহজ ও সরন।
- ২। যে হিমায়ক শূন্যতায় চালাতে হয় তা নিমু তাপমাত্রায় ধাপে এবং যে হিমায়কের ঘনীভবন চাপ কম সেটা উচ্চ ধাপে ব্যবহার করা যায়।
- ৩। যেহেতু প্রতিটি চক্র পৃথকভাবে চালিত হয় সেহেতু পিচ্ছিলকরণ (Lubrication) কোন সমস্যা নয়।
- 8। উচ্চতর হিমান্তের হিমায়ক উচ্চ ধাপে এবং নিমুতর হিমান্তের হিমায়ক নিমু ধাপে ব্যবহার করা হয়।
- 🕲 ় ভরণ হিমায়কের সাথে ইন্টারকুলিং ব্যবহারে অধিক দক্ষতা পাওয়া হায় :

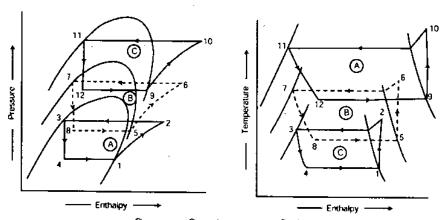
চিত্র ঃ ৩.১০ প্রপেন, ইখেন এবং মিখেন ব্যবহৃত তিন ধাপ সম্পন্ন ক্যাসকেড সিস্টেম

নিমু তাপমাত্রার জন্য হিমায়ক ঃ

নিমুতাপমাত্রা সৃষ্টি করার জন্য দুই রকম হিমায়ক ব্যবহৃত হতে পারে ৷ দুটি গ্রুপের হিমায়কের নাম নিমে দেয়া হল ঃ


- ১ | একক হিমায়ক (Single refrigerant)
 - (ক) নাইট্রোজেন
- (ঘ) অক্সিজেন
- (খ) হিলিয়াম
- (ঙ) ইথিলিন
- (গ) মিথেন
- (চ) কার্বন ডাই-অক্সাইড ইত্যাদি।

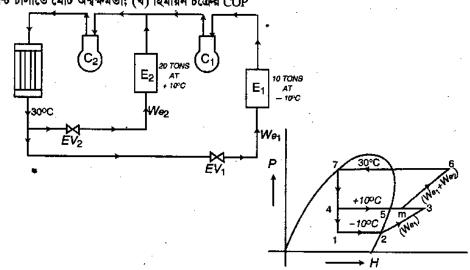
- ২। वहविथ हिमाग्रक (Multi refrigerant)
 - (ক) প্রপেন, ইথিলিন এবং মিখেন
- (ঘ) অ্যামোনিয়া, ইপেন এবং মিপেন
- (च) प्यात्मानिया, देखिनिन, मिर्यन এवः नाईस्पार्खन
- (%) दिभाग्नक-22 এবং दिभाग्नक-13
- (গ) মিখেল ক্লোরাইড, ইথিলিন এবং অক্সিঞ্জেন (চ) হিমায়ক-12 এবং (বহুবিধ হিমায়কের নাম উচ্চ ধাপ থেকে নিমু ধাপের জন্য সাজানো আছে)
 - (চ) হিমায়ক-12 এবং হিমায়ক-502 ইত্যাদি।


৩.১০ খ্রি-স্টেচ্ছ ক্যাসকেড সিস্টেমের পরিকল্পিড ও পি-এইচ ডান্নামাম বর্ণনা (Describe three stage casecade system with schematic and P-H diagram) ঃ

প্রি-স্টেম্ব ক্যাসকেড সিস্টেমে তিনটি কম্প্রেসার, দুইটি ক্যাসকেড কন্ডেসার, একটি কন্ডেসার এবং ইঙ্গপোরেটরের সমস্বয়ে গঠিত। এক্ষেত্রে ১ম স্টেক্কের কন্ডেসার এবং ২য় স্টেক্কের ইভাপোরেটর হিসেবে কাজ করে। ফলে হিমায়কের শীতসতা আরও অত্যধিক বৃদ্ধি পায়।

কশ্বেসর এর কন্ডেন্সার ২য় স্ট্রেজের ইভাপোরেটর কর্তৃক শীতল হয়। ৩য় স্টেজের ইভাপোরেটর ২য় স্ট্রেজের কন্ডেন্সারকে শীতল করে। প্রধান কন্ডেন্সার ৩য় স্টেজের সাথে সংযুক্ত থাকে এবং প্রধান (Main) ইভাপোরেটর ১ম স্টেজের ক্রন্থেসরের সাথে সংযুক্ত থাকে। ক্যাসকেড সিস্টেমে তথুমাত্র নিমু তাপমাত্রার ইভাপোরেটরে কার্যকর রেফ্রিজারেটিং ইফেক্ট (RP) পাওয়া যায়। উচ্চ্ তাপমাত্রা ক্যাসকেড সিস্টেমে উচ্চ ক্রুটনাংকের হিমায়ক ব্যবহৃত হয়। যেমন R-12 অথবা R-22, নিমু তাপমাত্রার ক্যাসকেড সিস্টেমে নিমু ক্র্টনাংকের হিমায়ক ব্যবহৃত হয়। যেমন R-13B1. ক্রুটনাংকের হিমায়কের অত্যক্ত উচ্চাপ থাকে, যা নিমু তাপমাত্রার ক্যাসকেড সিস্টেমের কম্প্রেসরে কম ডিসপ্রেসমেন্ট এবং অধিক COP নিচিত করে।

(a) Schematic diagram of a three stage cascade system.


চিত্ৰ ঃ ৩.১১ তিন স্টেব্ৰু ক্যাসকেড সিস্টেম

১৮৭৭ সালে বিজ্ঞানী পিকটেট (Pictet) সর্বপ্রথম অক্সিজেন (O_2) তরল করার কাজে ক্যাসকেড সিস্টেম ব্যবহার করেন। তিনি এতে সালফার ড্রাই-অক্সাইড (SO_2) এবং কার্বন ডাই-অক্সাইড (CO_2) হিমায়ক হিসেবে ব্যবহার করেন। গ্যাস তরল করার কাজে অন্য একসেট হিমায়ক সচরাচর তিন-স্টেজ ক্যাসকেড সিস্টেম ব্যবহৃত হয়। এতে অ্যামোনিয়া (NH_3) , ইথিলিন (C_2H_4) এবং মিথেন (CH_4) হিমায়ক হিসেবে ব্যবহৃত হয়। যা উপরের চিত্রে P-H ডায়াগ্রামসহ বিস্তারিতভাবে দেখালো হয়েছে।

একাধিক ইডাপোরেটর ও কম্প্রেসর ব্যবহৃত ডেপার কম্প্রেশন পদ্ধতি

৩.১১ সমস্যা সমাধান (Solve problem) 🎖

উদাহরণ-৩.১ ঃ হিমারক-১২ ব্যবহৃত একটি হিমায়ন চক্র বিভিন্ন লোডে নিচের চিত্রের ম্যায় কাজ করে। নির্বয় কর—
(ক) প্লান্ট চালাতে মোট অশ্বক্ষমতা; (খ) হিমায়ন চক্রের COP

চিত্ৰ ঃ ৩.১২ টু-স্টেজ কম্প্ৰেশন পদ্ধতি

P-H চার্ট থেকে পাই

$$H_1 = 136.5$$
 $H_5 = 107$ $H_2 = 141.5$ $H_6 = 137.7$ $H_3 = 140$ $H_7 = 101.5$

$$[3000 \frac{\text{kg}}{\text{H}} = 1 : 50 \text{ kg/m} = 1 \text{ ton }]$$

$$\begin{split} m_1 &= \frac{10 \times 50}{H_1\text{-}H_8} &= \frac{500}{136.5\text{-}101.5} \\ &= 14.286 \text{ kg/mm} \\ m_2 &= \frac{20 \times 50}{H_6\text{-}H_7} &= \frac{1000}{137.7\text{-}101.5} \\ &= \frac{1000}{36.2} = 27.623 \text{ kg/mm} \end{split}$$

$$m_3 = \frac{x}{1-x} (m_1 + m_2)$$

$$= \frac{0.16}{0.84} (14.286 + 27.623)$$

$$= 7.983 \text{ kg/min}$$

$$C_1$$
 এর জন্য প্রয়োজনীয় অশ্বক্ষমতা $HP = \frac{m_1(H_2 - H_1)}{10.54} = \frac{14.286(141.5 - 136.5)}{10.54} = 6.777$

$$C_2$$
 এর জন্য প্রয়োজনীয় অশ্বক্ষমতা $HP = \frac{m_2 (H_3 - H_6)}{10.54} = \frac{27.623 (140 - 137.7)}{10.54} = 6.03$

মোট অশ্বক্ষমতা
$$\mathrm{HP_T} = 6.777 + 6.03$$

$$= 12.8 \, (উন্তর)$$

$$= \frac{\mathrm{মোট \ \widehat{e}} \, \mathrm{মায়}}{\mathrm{মোট \ \widehat{o}} \, \mathrm{sign}}$$

চিত্রেকর COP =
$$\frac{(20+10)\times50}{12.8\times10.54}$$
 = 11.12

🕥 অতি সংক্ষিম্ভ প্রব্রোন্তর :

১। ক্যাসকেড সিন্টেম বলতে কী বুঝার? অথবা, ক্যাসকেড সিন্টেমের সংজ্ঞা দাও। অথবা, ক্যাসকেড রিফ্রিজারেশন কাকে বলে? অথবা, ক্সেকেট রেফ্রিজারেশন সিন্টেম বলতে কী বোঝার?

[বাকাশিবো-২০১১, ২০১৫(পরি)] [বাকাশিবো-২০০৪, ২০১১ (পরি)]

[বাকাশিবো-২০১৪] [বাকাশিবো-২০১১]

😎 📆 দুই বা ততোধিক হিমায়ন চক্র মিলিত হয়ে একটি নিচু তাপমাত্রা সৃষ্টি করাকে ক্যাসকেড সিস্টেম বলে।

২। ক্যাসকেড সিস্টেমে ব্যবহার করা যায় এমন দৃটি হিমায়কের নাম निर्व।

উতন্ত এ অ্যামোনিয়া, ইথিলিন, মিথেন।

৩। মান্টি ইভাপোরেটর ব্যবহারে কী কী সুবিধা পাওয়া যায়?

উছর । একাধিক কম্প্রেসর ব্যবহৃত প্ল্যান্টে একটি কন্তেনার ও একাধিক ইভাপোরেটর ব্যবহৃত হয়। উদাহরণস্বরপ একটি কোন্ড স্টোরেজ এর কথা ধরা যাক, যেখানে তিনটি স্টোরেজ কক্ষে একই তাপমাত্রায় ও আর্দ্রতায় বিভিন্ন খাদদ্রব্য অথবা প্রতিটি কক্ষে ভিন্ন তাপমাত্রায় ও আর্দ্রতায় খাদদ্রব্য সংরক্ষণ করতে হয়। ঐ সমস্ত স্থানে একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহার করে সুবিধা পাওয়া যায়।

8। মান্টি ইভাপোরেটর ব্যবহারের উদাহরণ দাও।

[বাকাশিবো-২০০৮,২০০৯]

ঠিছর । উদাহরণস্বরপ একটি কোন্ড স্টোরেজ এর কথা ধরা যাক, সেখানে তিনটি স্টোরেজ কক্ষে একই তাপমাত্রার ও আর্দ্রতায় বিভিন্ন খাদ্য দ্রব্য অথবা প্রতিটি কক্ষে ভিন্ন তাপমাত্রা ও আর্দ্রতায় খাদ্যদ্রব্য সংরক্ষণ করতে ইয়। ঐ সমস্ত স্থানে একাধিক ইভাপোরেটরও কম্প্রেসর ব্যবহার করে সুবিধা পাওয়া যায়।

থাক প্রেসার ভালভ-এর কাজ কী?

অধবা, ব্যাক প্ৰেসাৱ ভালভ কী কাজ কৰে লেব?

পু টু বাকাশিবো-২০১১] ত্রী

্র্বিছর ছ ইভাপোরেটর এর চাপের পার্থক্য থাকায় চাপের ক্ষমতা আনাই ব্যাক প্রেসার ভালভ-এর কাজ।

৬। ক্যাসকেড কন্ডেনসার এর কাজ কী?

অথবা, ক্যাসকেড কভেদার এর কাজ কী?

[বাকাশিবো-২০১৪]

[বাকাশিবো-২০১২]

অর্থবা, ক্যাসকেড কন্ডেন্সার কাকে বলে। অর্থবা, ক্যাসকেড কন্ডেন্সার কেন ব্যবহার করা হয়।

্ঠিত্তর বি নিমুতাপমাত্রার হিমায়ন চক্রে ব্যবহৃত কভেন্সারকে ক্যাসকেড কভেন্সার বলে। এবং হাইস্টেজ ইবাপোরেটর বলে, ইহা একটি তাপ বিনিময়কারী বা Heat exchanger।

৭। ইলেকট্রোপ্রেটিং কীসের তৈরি।

[বাকাশিবো-২০০৯]

্ঠিতর বি ইলেকট্রোপ্লেটিং মূলত কপার এর তৈরি, এ ছাড়াও অ্যা**গু**মিনিয়াম ধারাও ইলেকট্রোপ্লেটিং করা হয়।

🔀 সংক্ষিম্ত প্রল্লোন্তর :

১। ইভাগোরেটরের চাপ কমলে RE এবং WD এবং (COP এর উপর কী প্রভাব পড়ে?

[বাকাশিবো-২০০৭]

🕭 হল 🔊 ইভাপোরেটরে চাপ কমলে RE কমে যায় ও COP-ও কমে যায় :

২। ক্যাসকেড সিস্টেমের প্রয়োজনীয়তা কী?

উছর । ১৮৭৭ সালে বিজ্ঞানী পিকটেট সর্বপ্রথম (O2) অক্সিজেন তরল করার কাজে ক্যাসকেট সিস্টেম ব্যবহার করেন। ক্যাসকেড সিস্টেমে উচ্চেতর হিমান্তর সাথে ইন্টারকুলির ব্যবহারে অধিক দক্ষতা পাওয়া যায়। উপরোল্লিখিত ব্যবহার বিধির জন্য ক্যাসকেড সিস্টেমের প্রয়োজনীয়তা অপরিসীম। বিভিন্ন দিক বিশ্লেষণ ও পর্যালোচনা করে দেখা যায় যে, অতি নিমুমাত্রায় ক্যাসকেড সিস্টেম অধিক উপযোগী।

একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত পদ্ধতির শুরুত্ব শিব।

্ঠিভর 🕏 একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত জ্যাপার কম্প্রেশন পদ্ধতির প্রকারভেদ নিম্নে দেয়া হল ঃ

- ১। একই তাপমাত্রায় একটি কম্প্রেসর ও একটি এক্সপানশন ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ২। বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, আলাদা আলাদা এক্সপানশন ভাল্ভ, ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ৩। বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাল্ভ, ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত সিস্টেম।
- 8। বিভিন্ন তাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর, এক্সপানশন ডাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ে। বিভিন্ন তাপমাত্রায় একাধিক এক্সপানশন ভাল্ভ, ভিন্ন ডিনু কম্প্রেসর ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।
- ৬। বিভিন্ন তাপমাত্রায় একাধিক কম্প্রেসর, ভিন্ন ভিন্ন এক্সপানশন ভাল্ড ও ইভাপোরেটর ব্যবহৃত পদ্ধতি।

্ মান্টি রেফ্রিজারেন্টের নাম নিৰ ।

ঠিতর 🚱 মান্টি রেফ্রিজারেন্টের নাম নিমে দেওয়া হল—

- (ক) প্রপেন, ইথিলিন এবং মিথেন
- (খ) অ্যামোনিয়া, ইথিলিন, মিথেন এবং নাইট্রোজেন্
- (গ) মিথেল ক্লোরাইড, ইথিলিন এবং অক্সিজেন
- (ঘ) অ্যামোনিয়া, ইথেন এবং মিথেন
- (৬) হিমায়ক-22 এবং হিমায়ক-13
- (চ) হিমায়ক-12 এবং হিমায়ক-502 ইত্যাদি।

মাল্টিস্টেজ ও ক্যাসকেড সিস্টেমের চারটি পার্থক্য লেখ। বাকাশিবো-২০০৭, ২০১০, ২০১১ (পরি), ২০১২, ২০১৪] অথবা, মাল্টিস্টেজ ও ক্যাসকেড সিস্টেমের মাঝে পার্থক্যগুলো লেখ। [বাকাশিবো-২০১৫(পরি)]

ঠিতর ট মান্টিস্টেজ ও ক্যাসকেড সিস্টেমের চারটি পার্থক্য নিমুরূপ ঃ

Ì	মান্টিস্টেজ সিস্টেম		ক্যাসকেড সিস্টেম
۱ د	দুই বা ততোধিক কম্প্রেসর ব্যবহার করে বিভিন্ন ধাপে সংকোচন (কম্প্রেশন) করার প্রক্রিয়াকে মাল্টিস্টেজ সিস্টেম বলে।	31	দুই বা ততোধিক হিমায়নচক্র মিলিত হয়ে একটি নিচু তাপমাত্রা সৃষ্টি করাকে ক্যাসকেড সিস্টেম বলে।
२।	তুলনামূলকভাবে লিকেজ লস কম হয়।	ર	দুই বা ততোধিক হিমায়ন চক্র সহজ্ঞ ও সরল।
	এটি সমমানের টর্ক সরবরাহ করে, ফলে ছোট আকারের ফ্লাই-ছইল প্রয়োজন হয়।	91	প্রতিটি চক্র পৃথকভাবে চালিত হয় সেহেতু পিচ্ছিল করণ কোন সমস্যা নয়।
8 ;	COP বৃদ্ধি পায়।	8:	ইভাগোরেটরের চাপ কমলে COP কমে যায়।

ক্যাসকেড সিস্টেম ব্যবহারে কী কী সুবিধা পাওরা যায়? অথবা, ক্যাসকেড সিস্টেমে ব্যবহারের সুবিধান্তলো শিখ ।

[বাকাশিবো-২০১২ (পরি)]

[বাকাশিবো-২০০৪]

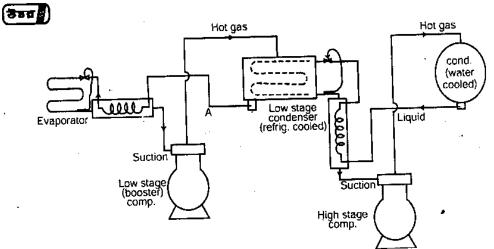
ভিত্তর 🕙 ক্যাসকেড সিস্টেমে ব্যবহারের সুবিধা**গুলো নিমুদ্ধপ**— 🥕

ক্যাসকেড সিস্টেম ব্যবহারে নিমুলিখিত সুবিধাগুলো পাওয়া যায়–

- ১। ক্যাসকেড সিস্টেমের দুই বা ততোধিক হিমায়ন চক্রই সহজ ও সরল।
- ২। যে হিমায়ক শূন্যতায় চালাতে হয় তা নিমু তাপমাত্রায় ধাপে এবং যে হিমায়কের ঘনীভবন চাপ কম সেটা উচ্চ ধাপে ব্যবহার করা যায়।
- ৩। যেহেতু প্রতিটি চক্র পৃথকভাবে চালিও হয় সেহেতু পিচ্ছিলকরণ (Lubrication) কোন সমস্যা নয়।
- 8। উচ্চতর হিমান্তের হিমান্তক উচ্চ ধাপে এবং নিমুতর হিমান্তকের হিমান্তক নিমু ধাপে ব্যবহার করা হয়।
- 😢 । তরল হিমায়কের সাথে ইন্টারকুলিং ব্যবহারে অধিক দক্ষতা পাওয়া যায়।

একাধিক ইভাপোরেটর ও কম্প্রেসর

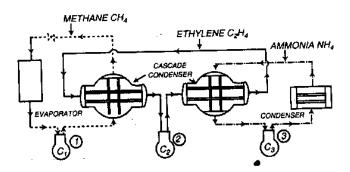
একাধিক ইভাপোরেটর ও কম্প্রেসর ব্যবহৃত ভেপার কম্প্রেশন পদ্ধতি

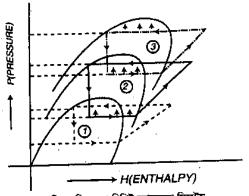

[বাকাশিবো-২০১১]

ব্যাক প্রেসার ভালত কী কাজ করে শেব। 91

ভিতর ট্র ইভাপোরেটরে চাপের পার্থক্য ধাকার কারণে চাপের ক্ষমতা আনার জন্যে ইভাপোরেটরে ব্যাক প্রেসার ভালভ বসানো থাকে। ব্যাক প্রেসার ভালভ মূলত চাপের ক্ষমতা সঠিকভাবে নিয়ন্ত্রণ আনয়ন এর কাজ।

দু-তেঁজ ক্যাসকেড সিতেঁম PH ভারামাম অন্ধন কর।


[বাকাশিবো-২০১১ (পরি)]



চিত্ৰ ঃ দ্বি-চক্ৰ বিশিষ্ট ক্যাসকেড সিস্টেম

ক্যাসকেড সিস্টেম এর চিত্র অন্ধন করে বিভিন্ন অংশ চিহ্নিত কর । অধবা, ক্যাসকেড সিস্টেম এর সচিত্র বর্ণনা কর।

_একাধিক ইভাপোরেটর ও *কম্প্রে*সর ব্যবহৃত ভেপার *কম্প্রেশ*ন পদ্ধতি [বাকাশিবো-২০০৪,২০০৭, ২০১০ (পরি)] [বাকাশিবো-২০০৮, ২০১০]

চিত্র ঃ তিন ধাপ বিশিষ্ট ক্যাসকেড সিস্টেম

> त्रज्ञासूनक श्रद्वाविनः

১। একাধিক ইভাপোরেটর এবং কম্প্রেসর ব্যবহৃত পদ্ধতির নামন্তলো দিখ।

ত্তিচর সংক্রেত 👩 অনুচেছদ ৩.২ নং দ্রাষ্টব্য ।

২। বিভিন্ন ভাপমাত্রায় একটি কম্প্রেসর, আলাদা আলাদা এক্সপানশন ভাল্ভ, ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি চিত্রসহ বর্ণনা কর।

🕏 হল সংক্রেত 🖁 অনুচেছদ ৩,৪ নং দ্রষ্টব্য 🗆

৩। বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাল্ভ, ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত সিস্টেম চিত্রসহ বর্ণনা কর।

ঠিচর সম্বক্তে ভ) অনুচেছ্দ ৩.৫ নং দ্রষ্টব্য i

8। বিভিন্ন ভাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর, এক্সপানশন ভাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতি চিত্রসহ বর্ণনা কর।

ইচর সহকেত 🕫) অনুচেছদ ৩.৩ নং দ্রষ্টব্য ।

৫। বিভিন্ন ভাপমাত্রায় একাধিক এক্সপানশন ভাল্ড, ভিন্ন ভিন্ন কম্প্রেসর ও ইভাপোরেটর ব্যবহৃত গদ্ধতি চিত্রসহ বর্ণনা কর।

উচন্ন সম্প্রেক্ত ঃ) অনুচ্ছেদ ৩.৭ নং দ্রষ্টব্য :

৬। বিভিন্ন তাপমাত্রায় একাধিক কম্প্রেসর, ভিন্ন ভিন্ন এক্সপানশন ভাস্ড ও ইভাপোরেটর ব্যবহৃত গদ্ধতি চিত্রসহ বর্ণনা কর।

ঠিচর সংক্ষেত 🔊 অনুচ্ছেদ ৩.৮ নং দ্রষ্টব্য।

৭। কেসকেট রেফ্রিজারেশন পদ্ধতিতে কীভাবে নিমু তাপমান্তা সৃষ্টি করে তা বর্ণনা কর। বাকাশিবো-২০১১]

অথবা, ক্যাসকেড সিস্টেমের চিত্রসহ বর্ণনা দাও।

[বাকাশিবো-২০০৪, ০৮, ১০] [বাকাশিবো-২০০৩, ০৫, ০৬]

অথবা, ক্যাসকেড সিস্টেমের বর্ণনা দাও।

উভন সংক্রেড 🚱 অনুচেছদ ৩.৯ নং দ্রষ্টব্য।

৮। **প্রী স্টেজ ক্যাসকেও সিস্টেম এর প্রবাহ চিত্র ও P-H ডায়ায়াম অন্ধন করে কার্যপ্রণালি বর্গনা কর**। [বাকাশিবো-২০১১(পরি), ২০১৪] **তিহন্ন সম্প্রকত ব্র** অনুচ্ছেদ ৩.১০ নং দ্রপ্তব্য।

৯। একটি টু-স্টেজ বিশিষ্ট ক্যাসকেড সিস্টেম এর চিত্র সহকারে কার্যপ্রধাসি লেখ।

[বাকাশিবো-২০০৯]

ঠ্ডর সহকেত 🔊 অনুচেছদ ৩.৯ নং দ্রষ্টবী।

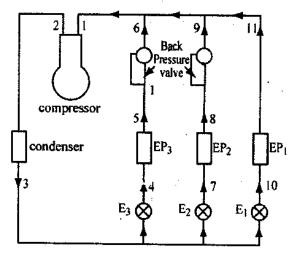
১०। मान्टिस्टिख कस्थिमन मिस्टिम ठिव्नम् वर्षना कत्।

[বাকাশিবো-২০০৪(পরি), ২০১০]

ঠিচর সহকেত 🕝 অনুচেহদ ৩.৭ নং দ্রষ্টব্য।

১১। মান্টিপল এক্সপানশন ভালভ ব্যবহৃত পদ্ধতির বিস্তারিত বর্ণনা দাও।

[বাকাশিবো-২০০৯]


উচর সহকেত 🕏 অনুচ্ছেদ ৩.৭ **নং** দ্রষ্টব্য।

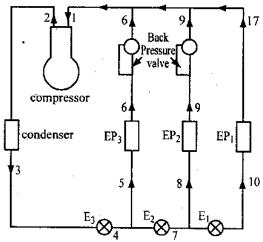
14. 14.

'n

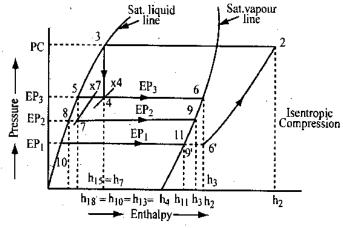
৩.৪ বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাল্ভ ও ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporators at different temperature with single compressor individual expansion valve and back pressure valve) 8

বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর ভিন্ন ভিন্ন এক্সপানশন ভাল্ভ ও ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতির ফ্লো ডায়াগ্রাম এবং P-h ডায়াগ্রামসহ বর্ণনা নিম্নে দেয়া হল ঃ

(a) Multiple evaporators at different temperatures with single compressor, individual expansion valves and back pressure valves.



চিত্র ঃ ৩.২ ডিন্ন ডাপমাত্রা ও একাধিক ইডাপোরেটর সম্পতিত বাম্প সংকোচন প্রণালি


কর্মনা $\mathfrak s$ এ পদ্ধতিতে কন্ডেন্সারের পরে তিনটি ভিন্ন কক্ষের জন্য পৃথক তিনটি এক্সপানশন ভাল্ভ ও ইভাপোরেটর থাকে $\mathfrak s$ এক্সপানশন ভাল্ভ $E_1,\,E_2,\,E_3$ হিমায়কের চাপ কমিয়ে (প্রেসার ড্রপ করে) ইভাপোরেটরে পাঠায় $\mathfrak s$ ইভাপোরেটর $\mathrm{EP}_1,\,\mathrm{EP}_2$ ও EP_3 এর চাপের পার্কর্য থাকায় চাপের ক্ষমতা আনার জন্য ইভাপোরেটর EP_2 ও EP_3 এর পরে ব্যাকপ্রেসার ভাল্ভ বসানো থাকে, যা উপরের চিত্র ও P_{-h} ভায়াগ্রামে দেয়া আছে $\mathfrak s$

এ পদ্ধতিতে প্রতিটি কন্দে ভিন্ন জ্বিপমাত্রা নিয়ন্ত্রণ করা যায়। প্রতিটি কন্দে বা চেমারে বিভিন্ন প্রকার খাদ্যদ্রব্য সামগ্রী সংরক্ষণ করা যায়। ৩.৫ বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর, একাধিক এক্সপানশন ভাশৃত ও ব্যাকপ্রেসার ভাশৃত একং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতি (Describe the multiple evaporator at different temperature with single compressor, multiple expansion and back pressure valve) ?

বিভিন্ন তাপমাত্রায় একটি কম্প্রেসর একাধিক এক্সপানশন ভাল্ভ ও ব্যাকপ্রেসার ভাল্ভ এবং একাধিক ইভাপোরেটর ব্যবহৃত পদ্ধতির প্রবাহচিত্র ও P-h ভায়াগ্রামসহ নিম্নে বর্ণনা করা হল ঃ

(a) Multiple evaporators at different temperatures with single compressor, individual expansion valves and back pressure valves.

চিত্র ঃ ৩.৩ একাধিক এক্সাপানশন ভার সম্বলিত বাস্প সংকোচন প্রণালি

বর্ণনা $\mathbf 2$ এ পদ্ধতিতে কন্ডেশার থেকে আগত তরল হিমায়ক এক্সপানশন ভাল্ভ $\mathbf E_3$ এর মাধ্যমে প্রেসার ড্রপ করে তরল হিমায়ক $\mathbf EP_3$ এর চাহিদা অনুযায়ী পর্যাপ্ত হিমায়ক প্রেরণ করে এবং অবশিষ্ট তরল হিমায়ক আরও কিছুটা শীতল হয় বাল্পায়নের মাধ্যমে। এরপর এক্সপানশন ভাল্ভ $\mathbf E_2$ এর মাধ্যমে আরও চাপ কমিয়ে তরল হিমায়ক পাঠানো হয়, সেখান থেকে $\mathbf EP_3$ ইভাপোরেটরের চাহিদা অনুযায়ী পাঠানো হয় এবং পরে অবশিষ্ট হিমায়ক এক্সপানশন ভাল্ভ $\mathbf E_1$ এর মাধ্যমে আরও প্রেসার ড্রপ করে পাঠানো হয়। ব্যাকপ্রেসার ভাল্ভ ব্যবহারের কারণ পূর্বেই জেনেছি।

অধ্যায়-৪

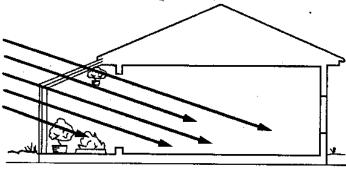
সোলার হিটিং সিস্টেম (Solar Heating System)

8.০ জুমিকা (Introduction) ঃ

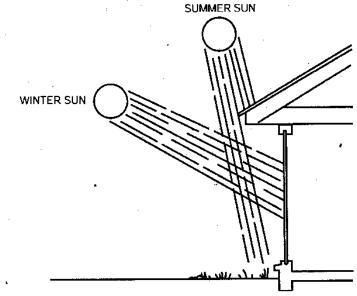
প্রতি বছর বিশ্বে জনপ্রতি শক্তির ব্যবহার বৃদ্ধি পাচ্ছে। আর এ শক্তির চাহিদা পূরণের জন্য মানুষ তাপীয়, জলীয় ও আণবিক 🗗 শক্তির ব্যবহার করছে। তাপীয় শক্তি উৎপাদনের জন্য আণবিক শক্তি, কয়লা ও প্রাকৃতিক গ্যাস ব্যবহার হয়। সম্পদের সীমাবদ্ধতার 👸 চিন্তা করে মানুষ বের করে ভিন্ন উপায়। অবশেষে সৌরশক্তি কাজে লাগানোর জন্য আত্মনিয়োগ করে।

বাংলাদেশে বছরে গড়ে আট মাস প্রতিদিন গড়ে অন্তত ছয় ঘণ্টা ভালই তাপ পাওয়া যায়। সূর্য পৃথিবী থেকে প্রায় পনেরো কোটি \sqrt{g} কিলোমিটার দূরে অবস্থিত। সূর্যের উপরিভাগের তাপমাত্রা প্রায় $57,000^\circ$ সেঃ এবং বিকিরণজনিত তাপের পরিমাণ 7.38×10^7 W/m² । বিরাট দূরত্বের জন্য পৃথিবীতে এ তাপের পরিমাণ প্রায় 1605.5 W/m² যা গড়ে 900 থেকে 1200 W/m² । বাংলাদেশে তাপের তীব্রতা বছরে প্রতিদিন গড়ে 5000 থেকে 6000 kcal/m²-day।

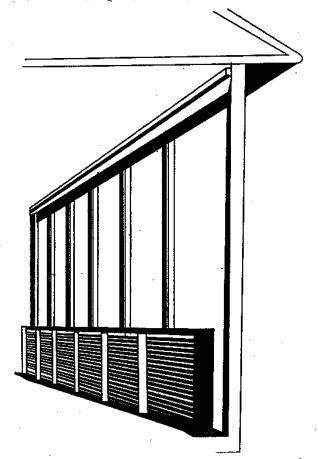
সৌরশক্তি যখন আমাদের দেশে বেশি পাওয়া যায় তখন বাড়ি, অফিস অধিক ঠাণ্ডা করার দরকার হয়। এটা আমাদের জন্য একটা বড় সুবিধা যে, অধিক চাহিদার সময় অধিক সৌরশক্তি পাওয়া যায়। কিন্তু শীতকালে অধিক দীতের সময় সৌরশক্তি কম পাওয়া যায়। আমাদের সমস্যা শীতকাল থেকে গ্রীষ্মকালে বেশি। গ্রীষ্মকালে সূর্যের তীব্রতা বেশি। তাই এ বিরাট প্রাকৃতিক তাপ সম্পদকে কাজে লাগাতে পারলে প্রচুর অর্থ সাশ্রয় করা যেত। আমরা প্রচুর তাপ সম্পদের অধিকারী হওয়া সম্বেও গরিব ও প্রযুক্তির অভাবে এ বিরাট সম্পদকে কাজে লাগানো যাছে না। নিজস্ব উদ্যোগে রাসায়নিক বা অ্যাবজর্পশন (Absorption) পদ্ধতির চালিকাশক্তি সংস্কার/নবায়ন/নির্মাণ করে ব্যাপকতাবে বাংলাদেশে বাজারজাত করা যায়। আর এ পদ্ধতির চালিকাশক্তি হিসেবে সৌরশুক্তিকে সহজেই কাজে লাগানো যায়। বিজ্ঞানী, প্রকৌশলী ও টেকনিশিয়ানরা এগিয়ে এলে এ কাজ অনেক সহজ্ঞ হত।


8.১ সোলার হিটিং পদ্ধতি (Solar heating system) 8

সৌর তাপকে সংরক্ষণ করে কোন নির্দিষ্ট স্থান বা রুমকে হিটিং করার পদ্ধতিকে সোলার হিটিং পদ্ধতি (Solar heating system) বলে।

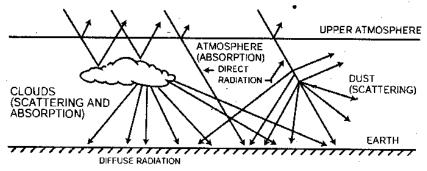

৪.২ সোশার হিটিং এর প্রকারভেদ (Type of solar heating) &

প্রত্যক্ষ সৌরশক্তি (Direct solar energy) \$ সূর্য পৃথিবীকে প্রচুর শক্তি প্রদান করে। প্রতি কর্গমিটারে এ তাপের পরিমাণ 1605.5 ওয়াট, যা প্রতিদিন গড়ে প্রতি বর্গমিটারে পাঁচ থেকে ছয় কিলো ক্যালরি তাপ উৎপন্ন করে। বিজ্ঞানী ও প্রকৌশলীদের জন্য এটা একটা বিরাট চ্যালেঞ্জ। এ চ্যালেঞ্জে জয়ী হতে হলে সকলের জানা থাকা দরকার কীভাবে সৌরশক্তি সংগ্রহ, সংরক্ষণ ও বিতরণ করা যায়। বাড়ি, ব্যবসা প্রতিষ্ঠান গরম ও ঠাপ্তা করতে একে ব্যবহার করা যায়। অনেক দেশে এ লক্ষে কাজ চলছে যার অপ্রগতি কম।


পরোক্ষ সৌরলন্ডি (Passive solar energy) ঃ অনেক অবকাঠামোর গঠন এমনভাবে করা হয় যাতে সৌর তাপকে কাঠামোতে কাজে লাগানো যায়, একে Passive solar design বলে। যেমন— বাড়ির পূর্ব, দক্ষিণ এবং পশ্চিম দিকে অধিক কাচের জানালা এবং উত্তর দিকের দেয়ালে জানালা কম রাখা হয়, যাতে শীতকালে সূর্যতাপে বাড়ি গরম রাখা যায়।

চিত্র ঃ ৪.১ গ্রীনহাউজের মাধ্যমে তাপ সংরক্ষণ

চিত্র ঃ ৪.২ ঃ ঝুলম্ভ ছাদ তাপ প্রবাহে বাধাও প্রদান করে

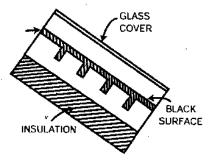


চিত্র ঃ ৪.৬ ঃ গ্রাস প্যানেশের নিচে টিউবের ওরল দিনে বাস্প হয় এবং রাতে কক্ষে তাপ হারিয়ে তরল হয়

Passive design এ যেসৰ বিষয়ের প্রতি গুরুত্ব দেয়া হয় তা হল-

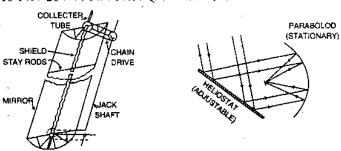
- পূর্ব, দক্ষিণ ও পশ্চিম দিকে অধিক জানালা রাখা, যাতে শীতকালে অধিক পরিমাণে সৌরতাপ প্রবেশ করতে পারে এবং
 উত্তর দিকে জানালা কম রাখা, যাতে দেওয়ালে তাপ প্রতিরোধ হিসেবে কাজ করে ।
- দক্ষিণ দিকে গ্রীনহাউজ রাখা, যাতে তাপ সংগ্রহ করতে পারে ।
- জানালাতে সানশেড দিতে হবে, যাতে গ্রীষ্মকালে সৌরশক্তি বাধা পায় এবং শীতকালে কাচে সৌররশিয় পড়ে।
- জানালাতে টিউবের মধ্যে তরল ভর্তি করে রাখতে হবে, যা দিনে তাপে বাল্পীভৃত হয় এবং রাতে তাপ দ্রীভৃত করে কক্ষ
 গরম রাখে ;

প্রত্যক্ষ ও বিদীর্ণ তাপ (Direct & diffused radiation) ঃ সূর্যকে 'দিনের তারা' (Day star) বলা যায়। বিকিরণের ফলে সূর্যের তাপের আংশিক সরাসরি পৃথিবীতে আসে এবং বেশির ভাগ তাপ মেঘ এবং জলীয়কণা শোষণ করে। যে তাপ সরাসরি পৃথিবীতে পৌছে তাকে প্রত্যক্ষ বিকিরণ বা (Direct radiation) বা বিদীর্ণ তাপ বলে এবং প্রতিফলিত (Refleted) বা ভিন্ন পথে যে তাপ পৃথিবীতে আসে তাকে Diffuse radiation বা বিদীর্ণ তাপ বলে।



চিত্র ঃ ৪,৪ প্রত্যক্ষ ও বিদীর্ণ সৌরতাপ

8.৩ বিভিন্ন প্রকার সৌরতাপ সংগ্রহের কার্যপদ্ধতি (The operation of different type of solar heat collection) ঃ


পৃথিবীর গায়ে যে সৌরতাপ পাওয়া যায় তা কারিগরি কোন কাজে লাগানো যায় না। এ তাপ কোন কালেক্টরে প্রথমে সংগ্রহ করা হয়। তারপর তা সঞ্চালনের মাধ্যমে কাজে লাগানো যায়। এ উদ্দেশ্য সম্পাদনের জন্য সোলার হিট কালেক্টরের উদ্ভাবন করা হয়। সোলার হিট কালেক্টর পাঁচ ধরনের—

ফ্রাট প্রেট কালেষ্টর (Flat plate collector) ই ফ্রাট প্রেট কালেস্টরের তলায় ধাতু নির্মিত টিউব বা প্লেট থাকে। এ প্লেটের নিচে তাপ প্রবাহ প্রতিরোধী থার্মোফাম/পলিওরেধিন থাকে। প্লেটের উপর কালো রঙ হয় এবং প্লেটের ভিতরে পানি বা অন্য কোন প্রবাহ রাখা হয়। প্লেটের উপর কিছু ফাঁকা রেখে এক বা দুই স্তর বিশিষ্ট গ্লাস প্যানেল বসানো হয়। শোষক, ইনসুলেশন এবং গ্লাস প্যানেল একত্রে একটি ধাতব ফ্রেমে আটকানো থাকে। এর সাথে পানি প্রবেশ এবং নির্গমনে সংযোগ থাকে। হিট কালেষ্টরের মাধ্যমে বায়ুকে উত্তপ্ত করার কাজে ব্যবহৃত হলে তাপ শোষকের সাথে ফিন্স থাকে।

চিত্র ঃ ৪.৫ ফ্র্যাট প্রেট কালেররের প্রচহন চিত্র

ক্ল্যাট প্লেট সংগ্রাহক গঠনে খুবই সহজ এবং সস্তা। কনসেনট্রেটিং কালেক্টর এর তুলনায় অধিক পরিমাণ বিদীর্ণ তাপ সংগ্রহ করতে পারে। আরও সুবিধা যে, এটা ঠাণা বা গরম করার কাজে ব্যবহৃত হয়। উত্তও করাই প্রধান উদ্দেশ্য হলে সমভূমি থেকে লেটিচুড অ্যাঙ্গেল এর চেয়ে 10 থেকে 20 ডিগ্রি বেশি কোণে স্থাপন করতে হয়।

চিত্র ৪ ৪.৬ প্যায়াবোলিক কালেষ্টর

কনসেনট্রেটিং সংগ্রাহক (Concentrating collector) 🎖

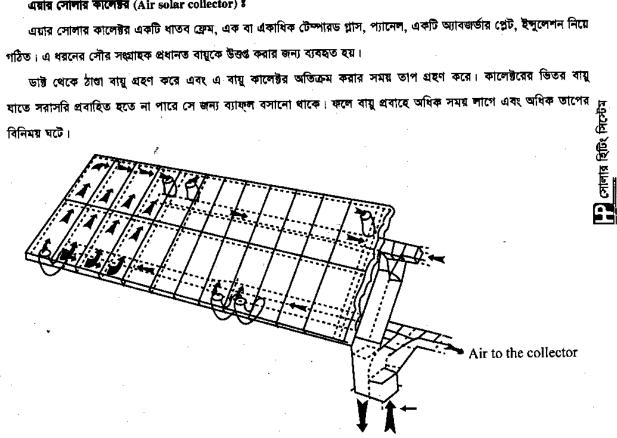
কনসেনট্রেটিং কালেক্টরের উপরে একটি অধি বৃদ্ধাকার আয়না থাকে, খাতে অভ্যন্তরে অবস্থিত হিটারে সূর্যরশ্মি নিপতিত হতে পারে। আয়নায় প্রতিফলনের ফলে ছোট একটি কালেক্টরে প্রচুর তাপ শোষিত হয়। সিলভার বা অ্যালুমিনিয়ামের তৈরি প্রতিফলকের উপর স্তর খুব মসৃণ হওয়ার ফলে অধিক পরিমাণ তাপ শোষিত হয়।

Characteristics of different solar collectors

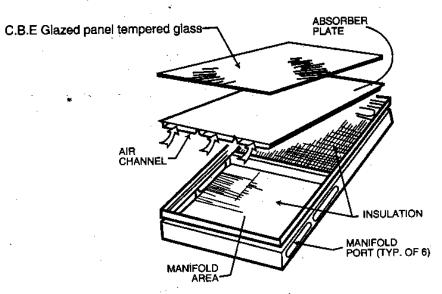
Characteristics of anier one solar contents			
Type of collector	Concentration ratio (C)	Working temperature range (°C)	Mean daily energy yield (kW/m²-day)
Flat plate collector	1	Upto 70	4 at 50°C
High efficiency falt plate colletor	1	60 to 120	4 at 100°C
Fixed concentrator	3 to 5	100 to 150	5 at 150°C
Parabolic trough collector	10 to 50	150 to 350	5.5 at 250°C
Parabolic dish collector	200 to 500	250 to 700	6.5 at 450°C

টেবিল ঃ ৪.১ বিভিন্ন সৌর সংগ্রাহকের বৈশিষ্ট্য

বিভিন্ন ধরনের সোলার কুলিং পদ্ধতি এবং সিপ্তপি (Different solar cooling systems and their COP)

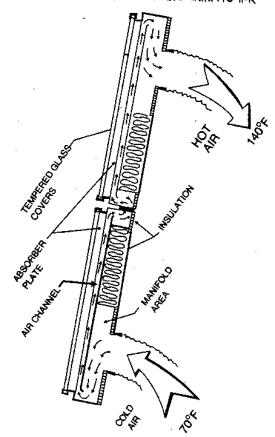

Type of solar energy conversion	Intermediate conversion	Cooling cycle	Combined COP
Black flat plate	None	Absorption $COP = 0.6$	0.2
30°C ambient temp. 90°C outlet	Mechanical power by	Vapour compression COP	0.05 to 0.1
temp. Efficiency of collection	rankine-cycle	= 2.5	
(30 to 40%)	(h = 2 to 4%)		
Selected flat plate 30°C ambient	None	Absorption COP = 0.6	0.07
temp. 90°C outlet temp. Efficiency	Mechanical power by	Vapour compression COP	
of collection	rankine-cycle	= 2.5	
(40 to 50%)	(h = 3 to 10%)		
Parabolic trough type	None	Absorption COP = 0.6	0.3
concentration	Mechanical power by	Vapour compression COP	0.125
30°C ambient temp.	rankine-cycle	= 2.5	
100°C outlet temp. Efficiency of	(h = 5 to 10%)		
collection (50%)	,		
Solar cells	Electrical to mechanical	Vapour compression	0.125
Efficiency of conversion	(h = 95%)	(COP = 2.5)	
(5 to 15%)			

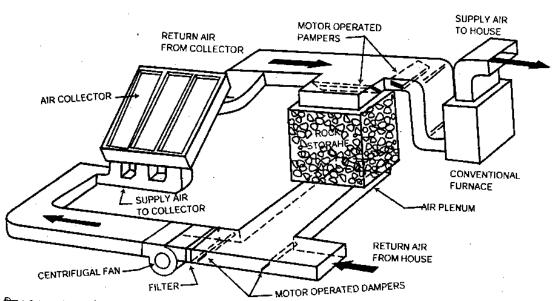
টেবিল ঃ ৪.২ সৌর সংগ্রহ পদ্ধতির কো ইফিসিয়েন্ট অব পারফরমেন্স



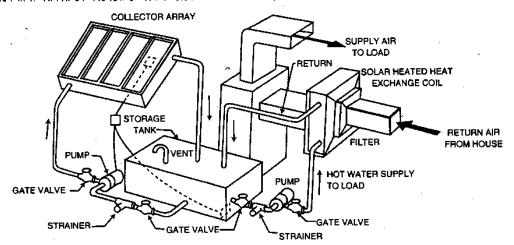
এয়ার সোলার কালেটর (Air solar collector) \$

· विनिभग्न घटि ।

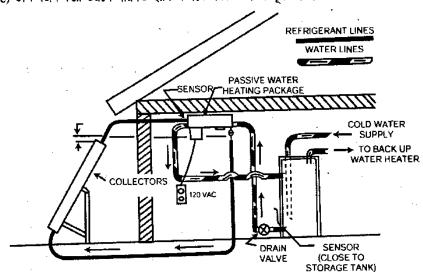

চিত্র ঃ ৪.৭ এয়ার সোলার হিট কালেটর


চিত্র ঃ ৪.৮ এয়ার সোলার কালেষ্টরের পঠন

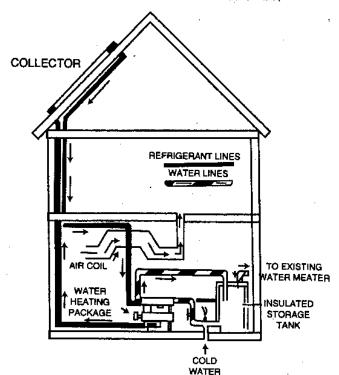
আডডাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকডিশনিং–১১


চিত্র ঃ ৪.৯ পাশাপাশি দুই এয়ার সোলার কালেটর

চিব ঃ ৪.১০ ব্রোয়ার, ডাষ্ট, এয়ার সোলার কালেষ্টর, প্রেনাম চেঘার এবং ফারনেস যুক্ত সৌরতাপ কাজে লাগিয়ে কক্ষের বাতাস গরম করার ব্যবস্থা কালেষ্ট্ররের অ্যাবজর্ভার প্রেটে সূর্যরশ্মি পড়ে। বিকিরণজনিত কারণে প্রচুর তাপ অ্যাবজর্ভার শোষণ করে। এর উপর বায়ুপ্রবাহের ফলে উস্তপ্ত হয়।

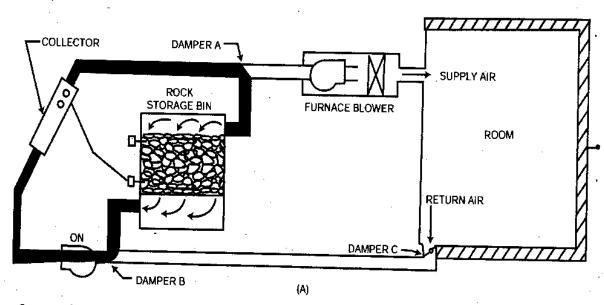

সোলার হিটিং সিস্টেম

লিকুইড সোলার কালেন্টর (Liquid solar collector) ই তরল সৌর সংগ্রাহক বা লিকুইড সোলার কালেন্টর অনেকটা এয়ার সোলার কালেন্টরের মত। বায়ুপ্রবাহের পরিবর্তে তরল প্রবাহিত হয়। কালেন্টরের ভিতরের তামার পাইপের ভিতর দিয়ে তলে প্রবাহিত হয়। তরল কালেন্টরের প্রবাহিত হওয়ার সময় প্রচুর তাপ গ্রহণ করে। একটি পান্পের সাহায্যে পানি সৌর কালেন্টর হয়ে সংরক্ষণাগার বা স্টোরেজ ট্যাঙ্কে যায়। সংরক্ষণাগার থেকে গরম পানি পুনরায় গরম করে কক্ষ থেকে বায়ু পুনঃ উত্তপ্ত করার জন্য ফেরত নেয়া হয়। মনে রাখা দরকার যে কালেন্টর স্টোরেজ ট্যাঙ্কের উপরে বসাতে হয়।


চিত্ৰ ঃ ৪.১১ সৌরভাপ কাজে দাণিয়ে ভয়দ পদার্থের মাধ্যমে কক্ষের ব্যতাস গরম করার ব্যবস্থা

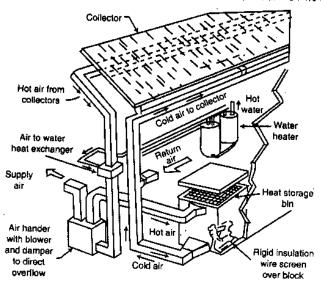
রেক্রিজারেন্ট-চার্জ্যভ পদ্ধতি কালেক্টর (Refrigerant charged collector) 8 রেক্রিজারেন্ট চার্জ্যভ পদ্ধতি পরোক্ষ বা প্রত্যক্ষ পদ্ধতির হতে পারে। পূর্বে যে দু'পদ্ধতি বর্ণনা করা হয়েছে অনেকটা তার মত। কালেক্টরে হিমায়ক বা রেক্রিজারেন্ট তাপ গ্রহণ করে এবং এ তাপ একটি হিট এক্সচেক্সারের (Passive water heating package) মাধ্যমে কোন তরল পদার্থকে উন্তর্ভ করে। উত্তর্জ তরল সংরক্ষণাগারে জমা রাখা হয়। সংরক্ষিত তরল কোন স্থান উত্তর রাখা বা আবাসিক ব্যবহারের জন্য গরম পানি সরবরাহের কাজে এ পদ্ধতিকে ক্ষেজ চেঞ্চ পদ্ধতি বলে। বন্তু অবস্থান্তরিত হয়ে তাপ গ্রহণ বা বর্জন করে। তাপ গ্রহণ করে চাপ বাড়ে ফলে চাপের পার্থক্য সৃষ্টি হয়। এতে হিমায়কের প্রবাহ ঘটে। হিমায়ক কালেক্টরে তাপ গ্রহণ করে বান্দেপ পরিণত হয় এবং ওয়াটার হিটিং প্যাকেজ (Water heating package) তাপ বর্জন করে তরলে পরিণত হয়। এভাবে একটি চক্র সম্পূর্ণ করে।

চিত্র ঃ ৪.১২ রেণ্ট্রিজারেন্ট চার্জড সিস্টেম সৌরভাপ কাজে দাপিয়ে কার্যকর করে


অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড ্রারকভিশনিং

ACTIVE SYSTEM-DIRECT AIR COIL AND WATER HEATING SYSTEM

চিত্র ঃ ৪.১৩ সোলার কালেট্রর বেশি উপরে বসানোর ফলে হিমায়ক পাস্পের মাধ্যমে পাঠাতে হয়


বায়ু উত্তর্ভকরণ পদ্ধতি ঃ

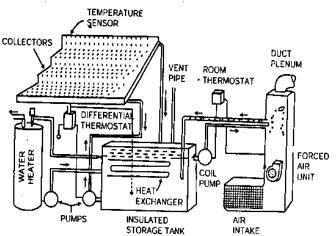
চিত্র ঃ ৪.১৪ দিনের বেদায় যখন কক্ষে তাপের দরকার হয় না তখন কালেট্রর তাপ সংগ্রহ করে এবং স্টোরেজ বিনে সংরক্ষণ করে। A এবং B বন্ধ থাকে

8.8 সৌর হিটিং পদ্ধতির বর্ণনা (Describe the operation of solar heating system) ই

সৌর হিটিং পদ্ধতিকে সাধারণত দু'ভাগে ভাগ করা হয়েছে - ১। সোলার এয়ার টাইপ পদ্ধতি। ২। পানি/লিকুইড টাইপ পদ্ধতি।
১। সোলার এয়ার টাইপ পদ্ধতি (Solar air type system) ই এ পদ্ধতিতে কোন ক্রমকে হিটিং করার জন্য প্রয়োজনীয়
বাতাসকে সরাসরি কালেন্ট্রর দারা প্রবাহিত করা হয়। চিত্রে একটি সোলার এয়ার টাইপ পদ্ধতি দেখানো হল।

চিত্ৰ ঃ ৪.১৫ এয়ার-টাইপ হিটিং সিস্টেম (Air-type heating system)

কন্ধ/রুম থেকে রিটার্ন এয়ার ডান্টের মাধ্যমে বাতাস টেনে নিয়ে সোলার কালেস্টরের মাধ্যমে বাতাস উত্তপ্ত বা গরম করে এয়ার হ্যান্ডেলারের মাধ্যমে কল্পে প্রেরণ করা হয়। উত্তপ্ত বাতাসের কিছু অংশ এয়ার হ্যান্ডেলার হতে সরাসরি হিট স্টোরেজ বিনে চলে যায়। হিট স্টোরেজ বিনে গরম বাতাসের তাপ স্টোরেজ করে রাখে। সেখান থেকে বাতাস আবার কালেস্টরে চলে যায়। এভাবে রুম থেকে রিটার্ন এয়ার ডান্টের মাধ্যমে বাতাস নিয়ে সোলার কালেস্টর হয়ে রুমে আসে। এভাবে অনবরত চলতে থাকে।


রাতের বেলায় যখন সৌরতাপ থাকে না তখন হিট স্টোরেজ বিনে যে তাপ ধরে রাখে সে তাপ বারা বাতাস গরম হয়ে কালেট্টর হয়ে এয়ার টাইপ হিট এক্সচেঞ্জার এর মাধ্যমে তাপের বিনিময় বাতাস আর গরম হয়ে কক্ষে প্রবেশ করে। ওয়াটার হিটারের ঘারা পানি গরম হয়ে হিট এক্সচেঞ্জারে আসে।

৪.৫ পিকুইড/পানি টাইপ সোদার হিটিং পদ্ধতির বর্ণনা (Describe the operation of liquid type solar heating system) ঃ

লিকুইড বা পানি টাইপ সোলার বিটিং পদ্ধতি এয়ার টাইপ সোলার বিটিং এর মত কাজ করে। এয়ার টাইপ সোলার বিটিং পদ্ধতি নিমে চিত্রসহ বর্ণনা করা হল ৪

এ পদ্ধতিতে ইনসুলেটেড ওয়াটার স্টোরেজ ট্যাংকে পানি থাকে। এই পানি পাস্পের সাহায্যে কালেক্টরে পাঠানো হয়। কালেক্টর সূর্যের তাপে পানিকে উত্তপ্ত করে আবার স্টোরেজ ট্যাংকে পাঠিয়ে দেয়, এভাবে স্টোরেজ ট্যাংকে পানি গরম থাকে।

রাতের বেলায় যখন সৌরতাপ থাকে না তখন পানি কালেন্টরে উঠানোর পাম্পটি বন্ধ থাকে। পানি গরম করার জন্য ওয়াটার সংযুক্ত একটি ছোট ট্যাংকের সঙ্গে সংযুক্ত পাম্পটি চালু করা হয়। এবার পানি গরম করার কাজটি করে ওয়াটার হিটার, অন্য সকল প্রবাহ একইভাবে চলতে থাকে।

চিত্ৰ ৪ ৪.১৬ পানি হিটিং পদ্ধতি (Water type heating system)

> অতি সংক্ষিপ্ত প্রশ্নোতর ঃ

১। সোলার হিটিং কী?

[বাকাশিবো-২০১৪]

অথবা, সোলার হিটিং বলতে কী বুঝায়?

[বাকাশিবো-২০১১, ২০১৪]

স্তিত্র জ সৌর তাপকে সংরক্ষণ করে কোন নির্দিষ্ট স্থান বা রুমকে হিটিং করার পদ্ধতিকে সোলার হিটিং পদ্ধতি (Solar heating system) বলে।

সোশার হিট অপারেটেড এয়ারকভিশনিং-এর সংজ্ঞা দাও।

্ঠিতর ট্রি সৌরতাপ ব্যবহার করে কোন রুম বা স্থানের বাতাসকে কন্ডিশনিং করার পদ্ধতিকে সোলার হিট অপারেটেড এয়ারকন্ডিশনিং বলে।

৩। সোলার কালে**ট**র কী?

[বাকাশিবো-২০০৯]

অথবা, সোলার কালেটর এর কাজ কী?

[বাকাশিবো-২০০৪]

অথবা, সোলার হিট কালেষ্টর এর কাজ কী? অথবা, সোলার হীট কালেষ্টরের কাজ উল্লেখ কর।

[বাকাশিবো-২০০৯]

প্রতিষ্ঠা পৃথিবী থেকে যে সৌরতাপ পাওয়া যায় তা সঞ্চালনের মাধ্যমে কাজে লাগানোর জন্য এক ধরনের কালেন্টর ব্যবহার করা হয়। একেই সোলার কালেন্টর বলে।

8। ফ্র্যাট প্লেট কালেষ্টর কী কী উপাদান নিয়ে গঠিত?

[বাকাশিবো-২০১২(পরি), ০৭, ১০, ১৫(পরি)]

😕 হর 🖁 ফ্র্যাট প্লেট কালেক্টর নিমুলিখিত উপাদান নিয়ে গঠিত–

- (i) Insulation
- (ii) Black surface.
- (iii) Glass cover.

পরিবাপ্ত সৌরতাপ বিকিরণের সংজ্ঞা দাও।

[বাকশিবো-২০০৮]

্ঠিতর বার সৌরতাপ বিকিরণের সিংহভাগই ছড়ানো ছিটানো অবস্থায় প্রতিফলিত হয়ে মহাশ্ন্য ফিরে যায় এবং বায়ুমণ্ডল কর্তৃক শেষিত হয়। এই বিকিরণের একটি অংশ পুনরায় বিকিরণ প্রক্রিয়ায় সকল দিক থেকে সুষমভাবে ভৃপৃষ্ঠে পৌহায়। তাকেই পরিব্যাপ্ত বিকিরণ বলে। মেঘাছেনু আকাশের ক্ষেত্রে পরিব্যাপ্ত বিকিরণের পরিমাণ বেড়ে যায়।

এয়ার সোলার কালেয়র কী?

[বাকাশিবো-২০০৪]

অথবা, এয়ার সোলার কালেটর বলতে কী বোঝায়?

[বাকাশিবো-২০১৫(পরি)]

শুহুর 🔊 এয়ার সোলার কালেষ্ট্রর (Air solar collector) 🎖

এয়ার সোলার কালেক্টর একটি ধাতব ফ্রেম, এক বা একাধিক টেস্পারড গ্রাস, প্যানেল, একটি অ্যাবজর্ভার প্রেট, ইন্সুলেশন নিয়ে গঠিত। এ ধরনের সৌর সংগ্রাহক প্রধানত বায়ুকে উত্তপ্ত করার জন্য ব্যবহৃত হয়।

ডাষ্ট থেকে ঠাণ্ডা বায়ু গ্রহণ করে এবং এ বায়ু কালেষ্ট্রর অতিক্রম করার সময় তাপ গ্রহণ করে। কালেষ্ট্ররের ভিতর বায়ু যাতে সরাসরি প্রবাহিত হতে না পারে সে জন্য ব্যাফ্ল বসানো থাকে। ফলে বায়ু প্রবাহে অধিক সময় লাগে এবং অধিক তাপের বিনিময় ঘটে।

मःकिष्ठ श्रद्धावतः

সোলার হিট কোখার কোখার ব্যবহৃত হয়? অথবা, বাংলাদেশে সোলার হিটের প্রয়োগক্ষেত্রসমূহ লিখ।

[বাকাশিবো-২০১০ (পরি)] [वाकानिरवा-২००८, २००৭]

্ঠিতর ৪ সোলার হিট নিম্নোক্ত ক্ষেত্রে ব্যবহৃত হয় ঃ ১। গৃহের পানি গরম করার কাজে।

২। বাতাস গরম করার কাজে।

ে। অ্যাবজর্পশন রেফ্রিজারেশনে।

সৃইমিং পুলের পানি গরম করার কাজে।

৬। বিদ্যুৎ উৎপাদনে। ৭। স্যাটেলাইটে।

8। হিট পাম্পে।

৮। খাদ্য ওচ্চকরণ ইত্যাদিতে।

সোলার হিট কীভাবে সংরক্ষণ করা যায়? श

ভিতর ঃ সোলার এনার্জি সংরক্ষণ নিমুলিখিতভাবে করা যায়–

১। পানিতে।

৩। বায়ু ট্যাংকে।

২। পাধরের ট্যাংকে।

8। ব্যাটারিভে।

সোলার হিটিং কত প্রকার ও কী কী?

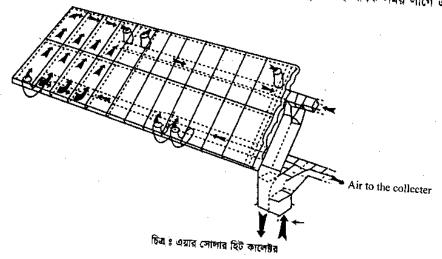
শুভর ট্র সোলার হিটিং ৩ প্রকার, যথা–

১। প্রত্যক্ষ সৌরশক্তি,

২। প্রত্যক্ষ ও বিদীর্ণ তাপ,

৩। পরোক্ষ সৌরশক্তি।

থতাক ও বিদীর্ণ তাপ কী?


ঠেচর । প্রত্যক্ষ ও বিদীর্ঘ তাপ (Direct & diffused radiation) ঃ সূর্যকে 'দিনের তারা' (Day star) বলা যায়। বিকিরণের ফলে সূর্যের তাপের আংশিক সরাসরি পৃথিবীতে আসে এবং বেশির ভাগ তাপ মেঘ এবং জলীয়কণা শোষণ করে। যে তাপ সরাসরি পৃথিবীতে পৌছে তাকে প্রত্যক্ষ বিকিরণ বা (Direct radiation) বা বিদীর্ণ তাপ বলে এবং প্রতিফলিত (Refleted) বা ভিন্ন পথে যে তাপ পৃথিবীতে আসে তাকে Diffuse radiation বা বিদীর্ণ তাপ বলে।

¢1

(ঠন্তর 🗗 এয়ার সোলার কালেটর (Air solar collector) 🎖

এয়ার সোলার কালেক্টর একটি ধাতব ফ্রেম, এক বা একাধিক টেম্পারড গ্লাস, প্যানেল, একটি অ্যাবজর্ভার প্লেট, ইন্স্লেশন নিয়ে গঠিত। এ ধরনের সৌর সংগ্রাহক প্রধানত বায়ুকে উত্তপ্ত করার জন্য ব্যবহৃত হয়।

ডাক্ট থেকে ঠান্তা বায়ু গ্রহণ করে এবং এ বায়ু কালেক্টর অতিক্রম করার সময় তাপ গ্রহণ করে। কালেক্টরের ভিতর বায়ু যাতে সরাসরি প্রবাহিত হতে না পারে সে জন্য ব্যাফ্ল বসানো থাকে। ফলে বায়ু প্রবাহে অধিক সময় লাগে এবং অধিক তাপের বিনিময় ঘটে।

ታታ

। সোলার কালেটর কত প্রকার ও কী কী?
 অথবা, দুটি সোলার কালেটরের নাম লিব।

[বাকাশিবো-২০০৯]

ভিছন্ত সোলার কালেটর চার, প্রকার–

- ১। ক্ল্যাট প্লেট কালেরর,
- ২ 🛊 নিকুইড সোলার কালেটর,
- ৩ : এয়ার সোলার কালেট্রর,
- ৪। রেফ্রিভারেন্ট চার্জড কালেক্টর।

নিকুইড সোলার কালেষ্টর কীভাবে কান্স করে?

[বাকাশিবো-২০০৭, ২০১২, ২০১৪]

তিষ্ক লিক্ইড সোলার কালেটর (Liquid solar collector) \$ তরল সৌর সংগ্রাহক বা লিক্ইড সোলার কালেটর অনেকটা এয়ার সোলার কালেটরের মত। বায়ুগুবাহের পরিবর্তে তরল প্রবাহিত হয়। কালেটরের ভিতরের তামার পাইপের ভিতর দিয়ে তরল প্রবাহিত হয়। তরল কালেটরের প্রবাহিত হওয়ার সময় প্রচুর তাপ গ্রহণ করে। একটি পাম্পের সাহায্যে পানি সৌর কালেটর হয়ে সংরক্ষণাগার বা স্টোরেজ ট্যাঙ্কে যায়। সংরক্ষণাগার থেকে গরম পানি পুনরায় গরম করে কক্ষ থেকে বায়ু পুনঃ উত্তও করার জন্য ক্ষেরত নেয়া হয়। মনে রাখা দরকার যে কালেটর স্টোরেজ ট্যাঙ্কের উপরে বসাতে হয়।

৮। সোলার হিট কালেটরগুলো নাম লেখ।

[বাকাশিবো-২০১২ (পরি)]

[বাকাশিবো-২০০৮, ২০১৫(পরি)]

[বাকাশিবো-২০০৯]

অধবা, বিভিন্ন প্রকার সৌরভাপ সংগ্রাহকের নাম দেব। অধবা, দুটি সোলার কালেটর এর নাম দিব।

ঠিভত্ন হ সোলার হিট কালেট্রবণ্ডলো হল ঃ

- ১। ফ্রাট প্রেট কালেন্টর।
- ২। কনসেনট্রেটিং কালেরর।
- ৩। এয়ার সোলার কালেট্র ।
- ৪। লিকুইড সোলার কালেষ্টর।
- ১। ক্র্যাট প্রেট কালেইরের কান্স লিব।

[বাকাশিবো-২০০৪]

ঠিত হাট প্রেট কালেষ্টর (Flat plate collector) ই চ্যাট প্রেট কালেষ্টরের তলায় ধাতু নির্মিত টিউব বা প্রেট থাকে। এ প্রেটের নিচে তাপ প্রবাহ প্রতিরোধী থার্মোফাম/পলিওরেথিন থাকে। প্রেটের উপর কালো রঙ হয় এবং প্রেটের ভিতরে পানি বা অন্য কোন প্রবাহ রাখা হয়। প্রেটের উপর কিছু ফাঁকা রেখে এক বা দুই ন্তর বিশিষ্ট গ্লাস প্যানেল বসানো হয়। শোষক, ইনস্লোশন এবং গ্লাস প্যানেল একত্রে একটি ধাতব ক্রেমে আটকানো থাকে। এর সাথে পানি প্রবেশ এবং নির্গমনে সংযোগ থাকে। বিট কালেষ্টরের মাধ্যমে বায়ুকে উত্তপ্ত করার কাজে ব্যবহৃত হলে তাপ শোষকের সাথে ফিল থাকে।

त्रव्यामृतक श्रद्वावि :

১। পিকুইড টাইপ সোলার হিটিং পদ্ধতি বর্ণনা কর।

তিহন্ন সম্মানত ছ) অনুচেছদ ৪.৪ নং দুটব্য ৷

২। এরার টাইপ সোলার হিটিং পদ্ধতি বর্ণনা কর।

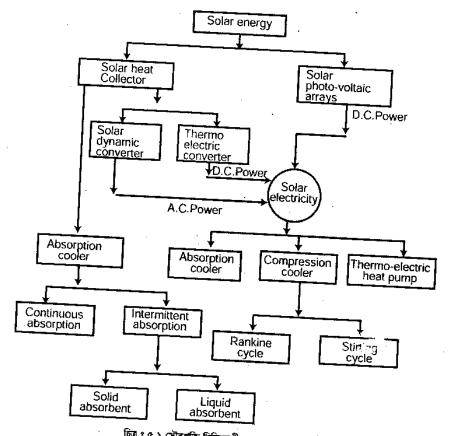
(উচন সহকেত 🚱 অনুচেছদ ৪,৪ নং দ্রাইব্য।

৩। নিকুইড টার্বো সোলার হিটার এর কার্যপ্রণালি বর্ণনা কর।

[বাকাশিবো-২০১১]

ঠিচর সংক্রেত 🗟 ৪.৫ নং অনুচেহদ দুটব্য।

অধ্যায়-৫


সোলার কুলিং সিস্টেম (Solar cooling system)

৫.০ ভূমিকা (Introduction) ঃ

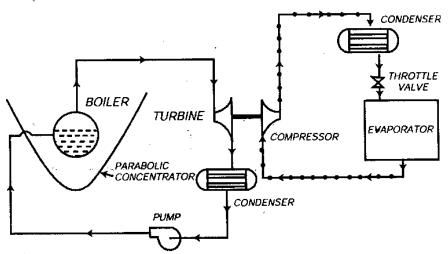
সোলার অর্থ সৌর বা সূর্য এবং কুলিং অর্থ ঠাতা বা শীতলকরণ প্রণালি। সৌরশক্তি ব্যবহার করে কুলিং প্রক্রিরাকরণ প্রণালিই হলো সোলার কুলিং সিস্টেম। সৌরশক্তির মাধ্যমে বাল্প সংকোচন ও বাল্প শোষণ উভয় পদ্ধতি ব্যবহার করা যায়। এক্ষেত্রে মোটরের পরিবর্তে স্টিম টারবাইন ব্যবহৃত হয়। সৌরতাপ সোলার হিট কালেক্টরের মাধ্যমে সঞ্চিত হয়। বর্তমান বিশ্বে বিনামূল্যে ও কম খরচে, স্বল্প পরিসারে বিপুল পরিমাণে বায়ুমন্তল হতে সৌরতাপ আহরণ করা সম্ভব। সোলারশক্তি সঞ্চিত করে ব্যাটারি চার্জ করে (উক্ত ব্যাটারি হতে কনভার্টারের মাধ্যমে শক্তি বৃদ্ধি করে A/C, ফ্রিন্স সহ অন্যান্য শীতলকরণ উপাদানসমূহকে পরিচালনা করা হয়। আলোচ্য অধ্যায়ে সোলার কুলিং পদ্ধতি, শীতাতপ নিয়ন্ত্রণ প্রণালি, ডিহিউমিডিফিকেশন প্রণালিসহ নানাবিধ বিষয় জ্ঞাত হওয়া যাবে।

৫.১ সোলার কুলিং পদ্ধতি (Solar cooling system) ঃ

সূর্য থেকে বা সৌরশক্তি ব্যবহার করে হিমায়ন চক্রকে চালু করে কুলিং বা ঠাণ্ডা করার পদ্ধতিকে সোলার কুলিং সিস্টেম বা সৌর কুলিং পদ্ধতি বলে।

তিত্র ঃ ৫.১ সৌরশক্তি বিভিন্নমুখী ব্যবহারের প্রবাহচিত্র

৫.২ সৌরশক্তি ব্যবহার করে বিভিন্ন প্রকার সৌর কুশিং পদ্ধতি (Mention the methods of cooling by using solar energy) 8

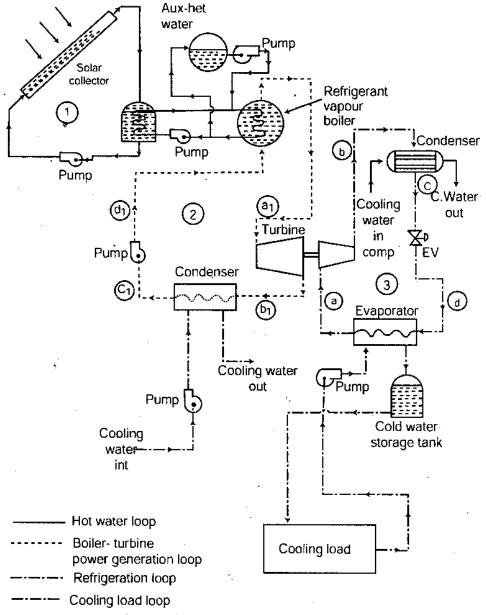

সৌরশক্তির মাধ্যমে হিমায়ন সম্ভব। বেশ কয়েকটি পদ্ধতিতে এ কাজ করা হয়। তবে প্রধানত যে পদ্ধতিগুলো ব্যবহার করা হয় তা হল—

- ১। বাষ্প সংকোচন পদ্ধতি (Vapor Compressor System)
 - (ক) পানি বাস্পের মাধ্যমে কম্প্রেসর চালনা
 - (খ) হিমায়ক চালনা (র্যাংকিন সাইকেল)
- ২। শোষণ পদ্ধতি (Absorption System)
 - (ক) অনবরত শোষণ পদ্ধতি (Continuous absorption system)
 - (খ) কঠিন শোষকের মাধ্যম (Solid absorption system) ৷

৫.৩ বিভিন্ন প্রকার সোলার কুলিং পদ্ধতির বর্ণনা (Describe the operation of the different types of solar cooling system) 8

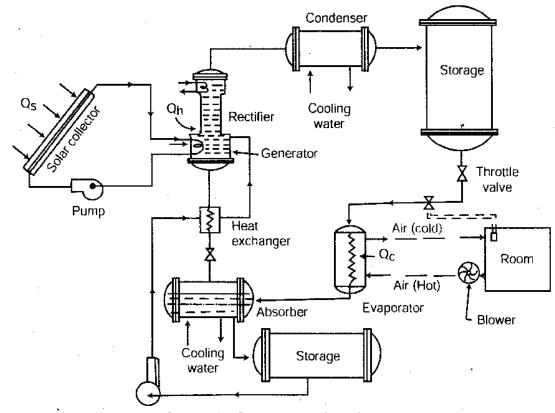
৫.৩.১ বাস্প সংকোচন পদ্ধতি (Vapor compression system) 8

সৌরশক্তির সাহায্যে বাষ্প সংকোচন এবং বাষ্প শোষণ উভয় পদ্ধতিই ব্যবহার করা যায়। বাষ্প সংকোচন পদ্ধতিতে সনাতন পদ্ধতির মোটরের পরিবর্তে কন্থেসর চালানোর জন্য স্টিম টারবাইন ব্যবহার করা হয়। কন্থেসর চালানো গেলে বাকি উপাংশগুলো স্বাভাবিক কাজ করে। সৌর তাপে পানি বাষ্প তৈরি হয়। আর সে বাষ্পের চাপে টারবাইন চলে যা কম্প্রেসরকে চালনা করা হয়। টারবাইন থেকে নির্গত পানি বাষ্প কভেসারে ঘনীভৃত হয়। আর পাষ্প সেই তরল আবার বয়লারে পাঠায়। এক্ষেত্রে খুব শক্তিশালী প্যারাবোলিক কনসেনট্টের ব্যবহার করা হয়। যাতে প্রচুর তরল পানিকে বাষ্পে পরিণত করা যায়। যখন সৌর তাপ পাওয়া না যায় তখন একই বয়লারে জ্বালানির সাহায্যে বাষ্প তৈরি করে অথবা একটি স্ট্যান্ডবাই বৈদ্যুতিক মোটরের সাহায্যে কম্প্রেসরকে চালানো হয়।



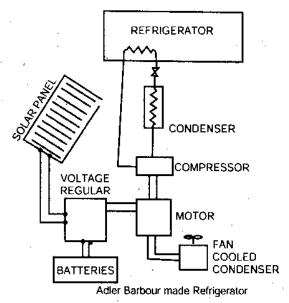
চিত্র ঃ ৫.২ সৌরশক্তির মাধ্যমে চালিত বাল্প সংকোচন পদ্ধতি

চিত্র ঃ ৫.২ এ তিনটি বর্তনী দেখানো আছে। ১নং বর্তনীতে সোলার কালেষ্টরের মাধ্যমে পানিকে উত্তপ্ত করা যায়। আর সেই গরম পানি বাস্পের সাহায্যে ২নং বর্তনীর রেফ্রিজারেন্ট ভেপার বয়লারে সঞ্চালন করা হয়। সৌরশক্তির অভাবে বিকল্প ব্যবস্থা হট ওয়াটার বয়লারের মাধ্যমে তাপ প্রয়োগ করা হয়। ৩নং বর্তনী কীভাবে কাজ করে তা আমাদের জানা আছে। এ পদ্ধতির সাহায্যে বিদ্যুৎ শক্তির ব্যবহার হাস করা যায় কিন্তু পরিহার করা যায় না।


চিত্র ঃ ৫.৩ সৌরশন্ডি ব্যবহার করে যান্ত্রিক হিমায়ন চক্র চালনা

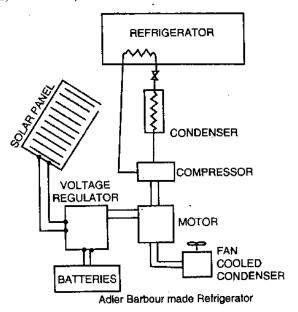
সৌরশক্তির সাহায্যে অ্যাবজর্পশন পদ্ধতির হিমারন ঃ

সৌর তাপ সংগ্রাহক সোলার কালেক্টর পানিতে তাপ দেয়া হয়। উত্তপ্ত পানি বা বাষ্প্র জেনারেটরে তাপ প্রয়োগ করে। ফলে আ্যাবজর্পন্দ পদ্ধতি চালিকাশক্তি পায়। অ্যামোনিয়া পানি ব্যবহৃত অ্যাবজর্পন্দ পদ্ধতির জেনারেটরে তাপ দিলে অ্যামোনিয়া পানির শক্তিশালী তরল মিশ্রণ বাষ্পীভূত হয়ে উপরে ওঠে। এ বাষ্প্র মিশ্রণে 5% খেকে 10% জলীয় বাষ্প্র পাকতে পারে, যা রেকটিফায়ারে পৃথক করা হয়। পৃথকীকৃত জলীয়বাষ্প্র আবার জেনারেটরে পাঠানো হয়। জেনারেটর থেকে নির্গত অ্যামোনিয়া বাষ্প্র কভেলারে ঘনীভূত হয়, যা স্টোরেজে জমা হয়। স্টোরেজ খেকে তরল অ্যামোনিয়া হিট এক্সচেঞ্জার হয়ে প্রটল ভালভের মাধ্যমে নিমুচাপে ইভাপোরেটরে পৌছে। এখানে নিমুচাপের তরল বাষ্প্রভিত হওয়ার সময় প্রচুর তাপ শোষণ করে। ইভাপোরেটরের এ বাষ্প্রক আ্যাবজর্জারে আগত দুর্বল মিশ্রণ শোষণ করে। অ্যামোনিয়া ও পানির মিশ্রণ নিচে অবস্থিত স্টোরেজে অবস্থান নেয় এবং সেখান থেকে পাম্পের সাহায়ে অন্য একটি চক্র তর্ব করার জন্য জেনারেটরে দেয়া হয়।

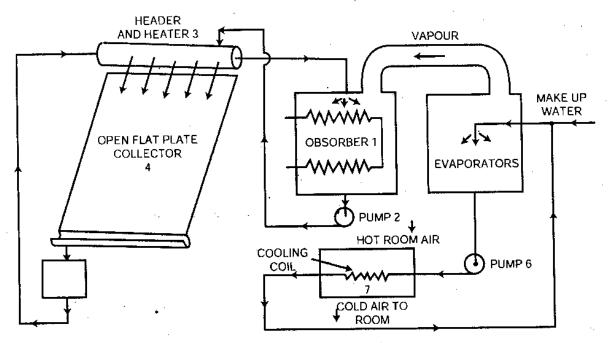

সোলার কুলিং সিস্টেম

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যাভ এয়ারকভিশনিং

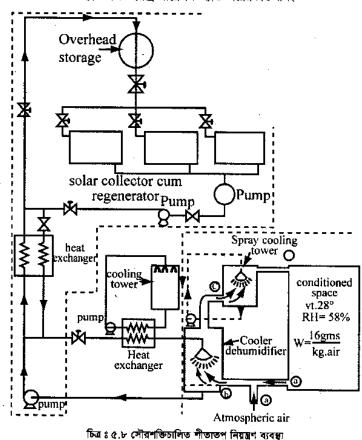
চিত্র ঃ ৫.৪ সৌরশক্তির সাহায্যে অ্যাবজর্পদন পদ্ধতির চালনা


চিত্র নং ঃ ৫.৪ অ্যাডপার বারবার টাইপ রেফ্রিজারেটরে যখন পর্যাপ্ত সৌর পাওয়ার থাকে তখন ব্যাটারি চার্জ হয়। যখন সৌর পাওয়ার কমে যায় তখন 12 ভোল্ট ব্যাটারি থেকে বিদ্যুৎ সরবরাহ করা হয় এবং রেফ্রিজারেটর চালু রাখা হয়। 12 ভোল্ট ব্যাটারিতে বিদ্যুৎ সরবরাহের জন্য 300 ওয়াটের সৌর প্যানেল দরকার হয়। 43° সেঃ পারিপার্শ্বিক তাপমাত্রায় এ ধরনের একটি রেফ্রিজারেটর প্রতিদিনে 500 whr বিদ্যুৎ শক্তি ব্যয় করে।

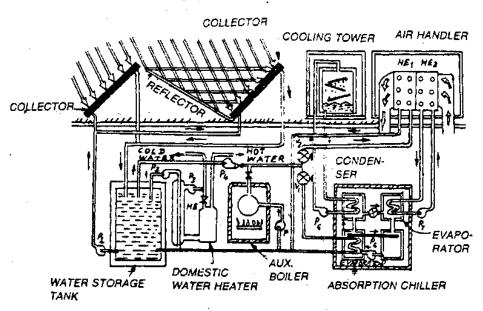
চিত্র ঃ ৫.৫ আডলার বারবার টাইপ রেফ্রিজারেটর


সোলার কুলিং সিস্টেম

মারবেলের তৈরি রেফ্রিজারেটর অ্যাডলার বারবার তৈরি রেফ্রিজারেটরের মতই। শুধু পার্থক্য রেফ্রিজারেটরের দেয়ালে ইউটেক্টিক্ ফুইড (Eutectic fluid) বসানো থাকে, যাতে সোলার পাওয়ার কমে গেলেও রেফ্রিজারেটর দ্রুত উত্তপ্ত না হয়।



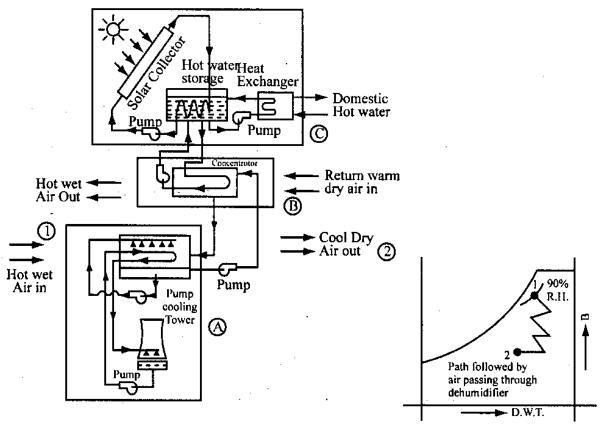
চিত্র ঃ ৫.৬ মারবেদ নির্মিত সৌর শক্তি পরিচালিত রেফ্রিজারেটর



চিত্ৰ ঃ ৫.৭ দিখিয়াম ব্ৰোমাইড ও পানি ব্যবহৃত অ্যাবজৰ্পশন শীতাতপ নিয়ন্ত্ৰণ ব্যবস্থা

যুক্তরাষ্ট্রের এরিজোনা মরুভূমিতে স্থাপিত লিখিয়াম ব্রোমাইড (Lithium Bromide) ও পানি ব্যবহৃত অ্যাবন্ধর্পশন টাইপ হিমায়ন যন্ত্র বা শীতাতপ নিয়ন্ত্রণের কাজে লাগানো হয়েছে। এ ছাড়াও জাপানের ইয়াজাকি করপোরেশন (Yazaki corporation) এবং রাশিয়ার দক্ষিণাঞ্চলে স্থাপিত এয়ারকৃতিশন প্ল্যান্ট বহুদিন যাবং গোলাযোগবিহীন কাজ করছে।

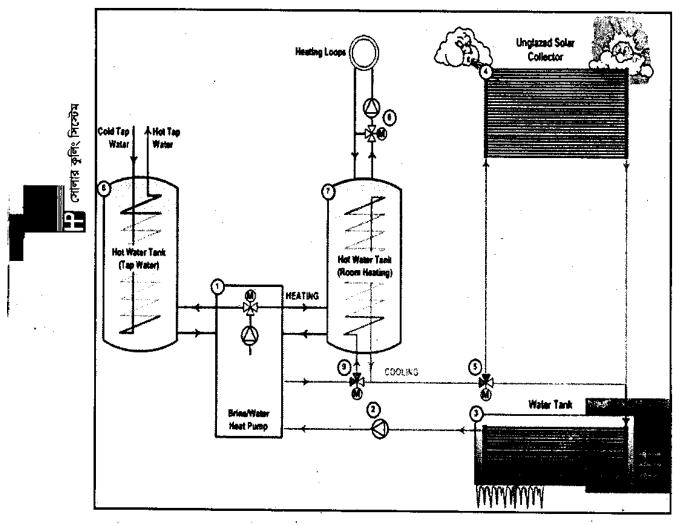
৫.৪ সৌরশক্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবহার বর্ণনা (Describe the solar heat operated year round airconditioning system) 8


চিত্র ঃ ৫.৯ সৌরভাপ ব্যবহৃত বাৎসরিক শীভাতপ নিয়ন্ত্রণ প্রণালী (Solar assisted year-round air-conditioning system)

চিত্র ৪ ৫.৯ সৌরশক্তি ব্যবহার করে বাৎসরিক শীতাতপ নিয়ন্ত্রণ ব্যবস্থা। শীতকালে বায়ু গরম ও গ্রীম্মকালে ঠাণ্ডা করার ব্যবস্থা সম্বলিত উভয় ঋতুতে চলার উপযোগী বলে এটাকে Year round air conditioning বলে। অ্যামোনিয়া ও পানি ব্যবহৃত অ্যাবন্ধর্পশন পদ্ধতির জেনারেটরে গরম পানি তাপে অ্যামোনিয়া বাস্প কভেন্সারে ঘনীভূত হয়। গ্রীম্মকালে ঘনীভূত অ্যামোনিয়া সম্প্রসারিত হয়ে ইভাপোরেটরে বাস্পীভূত হওয়ার সময় চিন্ত ওয়াটারের তাপ গ্রহণ করে ঠাণ্ডা পানি এয়ার হ্যান্ডেলিং ইউনিটে যায় এবং চিন্ত ওয়াটার কয়েলের উপর দিয়ে, ফলে প্রবাহের বায়ু ঠাণ্ডা হয়। শীতকালে এয়ার হ্যান্ডেলিং ইউনিট গরম পানিপ্রবাহের ফলে বায়ু উত্তের হয়।

৫.৫ সৌরশক্তি ব্যবহৃত ডিহিউমিডিফায়ারের বর্ণনা (Describe the operation of a sloar heat operated dehumidifier) ঃ

যখন বাইরের বাতাসের তাপমাত্রা ৪২° সে. (ড্রাই বাহু তাপমাত্রা বা DBT) এবং রিলেটিভ হিউমিডিটি ৮৫%, তথন সৌরশক্তি ব্যবহৃত ডিহিউমিডিফায়ারের সাহায্যে বাতাসের তাপমাত্রা ও অর্প্রতা কমানো হয়।


কক্ষের গরম এবং ভিজা (আর্দ্র) বাতাসকে ঠাণ্ডা ও শুষ্ক করার জন্য ডিহিউমিডিফায়ারের মধ্যদিয়ে প্রবাহিত করা হয়। কক্ষের বাতাস ডিহিউমিডিফায়ারের মধ্যদিয়ে প্রবাহিত হণ্ডয়ার সময় প্রবহমান বাতাসের তাপ শোষণ করার জন্য ঠাণ্ডা পানির কয়েল এবং বাতাসের আর্দ্রতা শোষণ করার জন্য ডেসিকেন্ট (Tri Ethylene glycol) ব্যবহার করা হয়। ডেসিকেন্ট হতে আর্দ্রতামুক্ত করার জন্য একে পাম্পের সাহায্যে কনসেনট্রেটরে (Concentrator) পাঠানো হয়। কনসেনট্রেটরে Hot water storage tank হতে প্রাপ্ত গরম পানি বারা ডেসিকেন্টকে উত্তর্ভ করে এর আর্দ্রতা মুক্ত করে পুনরায় ডিহিউমিডিফায়ারে ফিরে আসে।

টিত্র ঃ ৫.১০ সৌরশক্তির মাধ্যমে পরিচালিত ডিহিউমিডিফায়ার

किनः मिटमेय

৫.৬ সৌরশক্তি ব্যবহাত হিট পাম্পের বর্ণনা (Describe the operation of soler operated heat pump system) ঃ

চিত্র ঃ ৫.১১ সৌরশক্তি ব্যবহৃত হিট পাস্প

এটি একটি একক বন্ধ চক্ৰ ঃ

হিট পাম্পightarrow সোলার কালেক্টর ightarrow ট্যাংক ightarrow হিট পাম্প

ট্যাংক এবং কালেক্টর একত্রে হিট পাম্পের প্রধান উৎস, প্রাকৃতিক বাতাস এবং ট্যাংকের তাপমাত্রার মধ্যে পার্থক্যের উপর নির্ভর করবে বিচ্ছিং এর তাপমাত্রার চাহিদা, দুটি ভিন্ন ভিন্ন পানির ট্যাংক ব্যবহার করা হচ্ছে। হিট পাম্পের সাহায্যে দুটি ট্যাংক পানি গরম করার জন্য এবং অপরটি রুমের জন্য।

একটি হিট পাম্প থেকে ক্রমাণত ভিন্ন ভিন্ন আউটপুট পাওয়া সম্ভব না। এটি পুর্ণ ক্ষমতায় আউটপুট দেয় অথবা বন্ধ থাকে।

🕥 অতি সংক্ষিম্ভ প্রশ্নোন্তর :

১। সোলার কুলিং পদ্ধতি বলতে কী বুঝ়ং

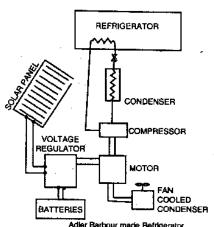
্ঠিছর । সূর্য থেকে বা সৌরশক্তি ব্যবহার করে হিমায়ন চক্রকে চালু করে কুলিং বা ঠাণ্ডা করার পদ্ধতিকে সোলার কুলিং সিস্টেম বা সৌর কুলিং পদ্ধতি বলে।

২। সৌরশক্তিচালিত বাস্প সংকোচন হিমায়ন পদ্ধতির বন্ধাংশগুলোর নাম লিখ।

শৈষ্টিত সনাতন পদ্ধতির সাহায্যে বাষ্প সংকোচন এবং বাষ্প শোষণ উজয় পদ্ধতিই ব্যবহার করা যায়। বাষ্প সংকোচন পদ্ধতিতে সনাতন পদ্ধতির মোটরের পরিবর্তে কদ্প্রেসর চালানোর জন্য স্টিম টারবাইন ব্যবহার করা হয়। কদ্প্রেসর চালানো গেলে বাকি উপাংশগুলো স্বাভাবিক কাজ করে। সৌর তাপে পানি বাষ্প তৈরি হয়। আর সে বাস্পের চাপে টারবাইন চঙ্গে যা কম্প্রেসরকে চালনা করা হয়। টারবাইন থেকে নির্গত পানি বাষ্প কন্তেমারে ঘনীভূত হয়। আর পাম্প সেই তরল আবার বয়লারে পাঠায়। এক্ষেত্রে খুব শক্তিশালী প্যারাবোলিক কন্সেনট্রেটর ব্যবহার করা হয়। যাতে প্রচুর তরল পানিকে বাষ্প্রেপরিণত করা যায়। যথন সৌর তাপ পাওয়া না যায় তখন একই বয়লারে জ্বালানির সাহায্যে বাষ্প তৈরি করে অথবা একটি স্ট্যাভবাই বৈদ্যুতিক মোটরের সাহায্যে কম্প্রেসরকে চালানো হয়।

🕨 সংক্ষিপ্ত প্রস্লোচর ঃ

সোলার এনার্জির প্রয়োগ ক্ষেত্রগুলো লিখ।


ঠিছর । বর্তমান সময়ে সৌরশক্তি বহুবিধ ব্যবহার করা হয়। সৌরশক্তি ব্যবহার করে ছোট ও মাঝারি পাওয়ার প্লান্ট তৈরি, সৌরশক্তি সঞ্চিত করে ব্যাটারি চার্জ করে উক্ত ব্যাটারি হতে কনভার্টার এর মাধ্যমে শক্তি বৃদ্ধি করে A/C ফ্রিজসহ অন্যান্য শীতলকর মিশিনারিজ পরিচালনা বর্তমান সময়ে সোলার এনার্জি ব্যবহার করে উড়োজাহাজ ও চালনা করা হয়।

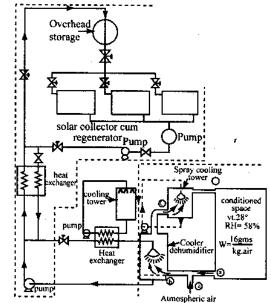
২। সৌরশক্তি ব্যবহৃত সৌর কুলিং পদ্ধতিভলো লিখ।

্ঠিছর ট্রি সৌরশক্তির মাধ্যমে হিমায়ন সম্ভব। বেশ কয়েকটি পদ্ধতিতে এ কাজ করা হয়। তবে প্রধানত যে পদ্ধতিগুলো ব্যবহার করা হয় তা হল—

- ১। বাষ্প সংকোচন পদ্ধতি (Vapor Compressor System)
 - (ক) পানি বাস্পের মাধ্যমে কম্প্রেসর চালনা; (খ) হিমায়ক চালনা (র্যাংকিন সাইকেল)
- ২। শোষণ পদ্ধতি (Absorption System)
 - (ক) অনবরত শোষণ পদ্ধতি (Continuous absorption system)
 - (খ) কঠিন শোষকের মাধ্যম (Solid absorption system)।
- ৩। আড়দার বারবার টাইপ রেফ্রিক্সারেটরের চিত্র অন্তন কর।

ठेश्य ह

চিত্র ঃ অ্যাড়লার বারবার টাইপ রেফ্রিজারেটর


৪। সোলার এনার্জি ব্যবহারপূর্বক ভেলার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের চিত্র ক্রমন করে বিভিন্ন অংশ চিহ্নিত কর।

[বাকশিবো-২০০৩, ২০০৫, ২০০৬]

অথবা, সোলার এনার্জি চালিত একটি রেফ্রিজারেশন পদ্ধতির প্রবাহচিত্র অন্ধন কর।

[বাকাশিবো-২০০৯]

😇 छ ज 🖁

চিত্র ঃ ৫.৮ সৌরশঞ্জিচালিত শীতাতপ নিয়ন্ত্রণ ব্যবস্থা

> त्रष्ठनासूनक श्रञ्जावि :

১। वान्त्र সংকোচন সোলার কুলিং পদ্ধতি চিত্রসহ বর্ধনা কর।

<mark>উষ্ঠর সমকেত ছ</mark> অনুচেছদ ৫.৩.১ নং দ্রষ্টব্য ।

২। বাহ্প শোষণ সোপার কুপিং পদ্ধতি চিত্রসহ বর্ণনা কর।

ঠিষ্টর সম্বক্তেত ভ্র অনুচেছদ ৫.৩.২ নং দ্রষ্টব্য।

৩। সৌরশক্তি ব্যবহৃত হিউমিডিফায়ারের চিত্রসহ কার্যপদ্ধতি বর্ণনা কর।

উচন্ন সম্বকেন্ড 🛭 অনুচ্ছেদ ৫.৫ নং দ্রষ্টব্য ।

8। সৌরশক্তি ব্যবহৃত বাৎসরিক শীতাতপ নিয়ন্ত্রণ পদ্ধতি বর্ণনা কর।

(উছন্ন সম্ফোড 🛭) অনুচেছদ ৫.৪ নং দ্রষ্টব্য ।

৫। শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সৌরশন্তিকে কীভাবে প্রয়োগ করা যায়, এর সচিত্র বর্ণনা কর। বাকশিবো-২০০৪, ০৭, ১২, ১৫(পরি)] অথবা, শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সোলার হাঁটকে কীভাবে ব্যবহার করা যায় তা চিত্রসহ বর্ণনা কর।বাকাশিবো-২০১২ (পরি)] অথবা, সৌরশন্তি কাজে লাগিয়ে কীভাবে শীতাতপ নিয়ন্ত্রণ করা যায়, বর্ণনা কর। বাকাশিবো-২০০৭, ২০১১ (পরি)] অথবা, সৌরশন্তি ব্যবহার করে শীতশীকরণ পদ্ধতির সচিত্র বর্ণনা দাও। বাকাশিবো-২০০৯]

উচর সহক্রেত 🚱 অনুচেছদ ৫.৩ নং দ্রষ্টব্য।

৬। সোলার হাট ব্যবহৃত অ্যাবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১০, ২০১০ (পরি), ২০১২, ২০১৪]

অপবা, সৌরশক্তির সাহায্যে চালিত ভ্যাপার অ্যাবজ্বর্গশন পদ্ধতির হিমায়ন চক্রের কার্যপ্রণালি চিত্র সহকারে বর্ণনা কর। বাকশিবো-২০০১

উচর সমকেত ন্ত্র অনুচেছদ ৫.৩.২ নং দ্রুষ্টব্য ।

৭। সৌরশক্তির মাধ্যমে চালিত বাস্প সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর।

[বাকাশিবো-২০০৮]

<mark>উষ্টর সম্বক্তে হু</mark> অনুচেছদ ৫.৩.১ নং দ্রষ্টব্য।

হিমায়ক (Refrigerants)

৬.০ ভূমিকা (Introduction) 8

হিমায়ক বা রেফ্রিজারেন্ট এমন এক ধরনের প্রবাধী যা কোন বস্তুর তাপ অপসারণের জন্য ব্যবহৃত হয়। হিমায়ক নিমু চাপে তরল থেকে বাচ্পে পরিণত হওয়ার সময় প্রচুর পারিপার্শ্বিক তাপ গ্রহণ করে এবং উচ্চ চাপে তরলায়ন এবং নিমু চাপে বাষ্পায়ন গুণসম্পন্ন প্রবাধী যা হিমায়ন আবর্তন চক্রে তাপ অপসারণের জন্য ব্যবহৃত হয়।

পৃথিবীর প্রথম হিমায়ক হল "ইথার" (Ether), যা পারকিন্স (Perkins) এর হস্তচালিত বাষ্প সংকোচন হিমায়ন যন্ত্রে ব্যবহৃত হয়। এর পরে ইথিলিন ক্লোরাইড $(C_2H_4Cl_2)$ এবং ১৮৭৫ সালের প্রথম দিকে অ্যামোনিয়া হিমায়ক হিসেবে ব্যবহৃত হয়। একই সময়ে হিমায়ক হিসেবে ১৮৭৪ সালে সালফার ডাই-অক্সাইড (SO_2) , ১৮৭৮ সালে মিথাইল ক্লোরাইড (CH_3Cl) এবং ১৮৮১ সালে কার্বন ডাই-অক্সাইড ব্যবহৃত হয়। ১৯১০ থেকে ১৯৩০ সাল পর্যন্ত বহু নতুন হিমায়ক যেমন— N_2C_3 , CH_4 , C_2H_6 , C_2H_4 , C_3H_8 নিচু তাপমাত্রায় হিমায়নে ব্যবহৃত হয়। অন্যদিকে সে সময় সেন্ট্রিফিউগ্যাল কম্প্রেসরে ডাইক্লোরো ইথিলিন $(C_2H_2Cl_2)$ এবং মনোব্রোমামিথেন (CH_3Br) ব্যবহৃত হয়।

পরবর্তী সময়ে যুক্তরাষ্ট্রেও ই. আই. ডুপন্ট "ফ্রেয়ন" ট্রেড নামে কিছু হিমায়ক উদ্ভাবন ও উন্নয়নে বিরাট অবদান রাথে ফুরিনেটেডে হাইড্রোকার্বনস বা ফুরোকার্বনস যাতে প্রধান এবং উপাদান হিসেবে মিধেন, ইধেন ইত্যাদি রয়েছে।

বহু প্রবাহী আছে যেগুলো হিমায়ক হিসেবে ব্যবহৃত হতে পারে তবে সুবিধা অসুবিধা বিবেচনা করে কতকগুলো হিমায়কের নাম নিম্নে দেয়া হল–

হিমায়কের নাম (Name of Refrigerant)	. রাসায়নিক সংকেত	হিমায়কের নম্বর
১। জ্যামোনিয়া	NH ₃	(R-717)
২। কার্বন ডাই-অক্সাইড	CO ₂	(R-744)
৩। সালফার ডাই-অক্সাইড	SO ₂	(R-764)
৪। মিথেল ক্লোরাইড বা মিথাইল ক্লোরাইড	CH₃Cl	(R-40)
৫। ট্রাইক্লোরো মনোফুরো মিখেন	CCl₃F	(R-11)
৬। ভাইক্লোরোডাইক্লোরো মিথেন	CCl ₂ F ₂	(R-12)
৭। মনোক্রোরোডাইফ্রোরো মিথেন	CHCIF ₂	(R-22)
৮। রেফ্রিজারেন্ট 22/115	CHC1F ₂ /CC1F ₂ , CF ₃	(R-502)

৬.১ একটি আদর্শ হিমায়কের ভৌত (Physical) শুণাবলি (Mention the physical properties of an ideal refrigerant) ঃ

যেসব গুণাগুণ বা বৈশিষ্ট্য থাকলে কোন হিমায়ককে আদর্শ হিমায়ক হিসেবে গণ্য করা যায়, সেগুলো নিচে দেয়া হল–

- ১। ক্ষয়কারক নয় (Non-corrosive)।
- ২। সান্ত্রতা কম হওয়া উচিত (Low viscosity)।
- ও। তাপ পরিবাহিতা বেশি হওয়া উচিত (High thermal conductivity) ।
- 8 । পিকেজ টেভেন্সি কম হওয়া উচিত (Low leakage tendency)।
- ৫। উচ্চ মাত্রায় ইলেকট্রিক্যাল রেজিস্ট্যান্স থাকা উচিত (Dielectric strength)।
- ৬। ব্যয় কম হওয়া উচিত (Low cost)।

৬.২ একটি আদর্শ হিমায়কের রাসায়নিক গুণাবলি (Mention the chemical properties of an ideal refrigerants) ঃ

- ১। রেক্রিজারেন্ট দাহ্য না হওয়া/অদাহ্য (Non-flammablé) ।
- ২। বিষাক্ত হওয়া উচিত নয় (Non toxic)।
- ৩। পানির সাথে জ্জবণীয় (Non soluble with water)।
- 8। তেলের সাথে হিমায়ক সহজেই মিশে যাওয়া উচিত (Miscibility)।
- ে। তেলের সাথে বিক্রিয়া ঘটবে না (Does not reaction with oil)।

৬.৩ একটি আদর্শ হিমায়কের থার্মোডাইনামিক্স শুণাবলি (Mention the thermodynamics properties of an ideal refrigerant) ⁸

- 🕽 । নিচু ফুটন্ত ভাপমাত্রা (Low boiling poit) ।
- ২৷ নিচু খনীভবন চাপ (Low condensing pressure) ৷
- ৩ ৷ নিচু আপেন্ধিক আয়তন (Low specific volume) ৷
- 8। উচ্চ সুপ্ততাপ (High latent heat) ৷
- ে। উচ্চ সংকট তাপ ও চাপ (High critical pressure and temperature) i
- ছেজিং তাপমাত্রা, কুলিং কয়েলের তাপমাত্রা থেকে অনেক কম হবে।
- ৭। বায়ুমণ্ডলের চাপ থেকে ইভাপোরেটর কভেন্সার চাপ বেশি হওয়া উচিত।

৬.৪ হিমায়কের শ্রেণিবিভাগ (Mention the classification of the refrigerant) 8

হিমায়ুক্তকে বিভিন্নভাবে ভাগ করা হয় । তবে প্রধানত ২ প্রকার ঃ

(ক) প্রাইমারি রেফ্রিজারেন্ট (Primary refrigerant) ঃ

যদি কোন হিমায়ক সরাসরি নিমুতাপ বা সৃগুতাপের মাধ্যমে অন্য কোন বস্তু বা পদার্থকে ঠাণ্ডা করে তাহলে তাকে প্রাইমারি হিমায়ক বলে। যেমন— হিমায়ক-১২, হিমায়ক-২২ এবং অ্যামোনিয়া বাষ্পায়নের সময় অন্য কোন বস্তু থেকে তাপ নিয়ে নেয়।

(খ) সেকেভারি হিমায়ক (Secondary refrigerant) ঃ

যদি কোন হিমায়ক অন্য কোন হিমায়ক কর্তৃক শীতল হয়ে নিজে অন্য কোন পদার্থকে অনুমেয় তাপের মাধ্যমে ঠাঙা করে, তাহলে তাকে সেকেন্ডারি হিমায়ক বলে। যেমন– বাতাস, পানি, ব্রাইন ইত্যাদি।

বাড়াস (Air) 3 এটা একটা মিশ্র পদার্থ 1 হিমান্কের $(0^{\circ}c)$ উর্ধ্বে এবং বায়ুমণ্ডলীয় উষ্ণতার নিমু তাপমাত্রায় সংরক্ষণের ক্ষেত্রে বাড়াসকে সেকেন্ডারি হিমায়ক হিসেবে ব্যবহার করা হয় 1 লীতাতপ নিয়ন্ত্রণে হিমায়ক হিসেবে বাত্যসের ব্যবহার রয়েছে 1

পানি (Water) ই হিমায়ক 0° সেপসিয়াসের উর্ধ্বে এবং বায়ুমগুলীয় উষ্ণতার নিমু তাপমাত্রার ক্ষেত্রে পানিকে মাধ্যমিক হিমায়ক বিসেবে ব্যবহার করা হয়। এয়ারকন্তিশনিং এর পরিকল্পিত বাতাস হতে তাপ সংগ্রহ করার জন্য এটা Chilled water হিসেবে ব্যবহার করা হয়। যখন পানির উষ্ণতা সাধারণ বায়ুমগুলীয় উষ্ণতা অপেক্ষা নিমু উষ্ণতায় আনয়ন করা হয়, তখন ঐ পানিকে Chilled water (শীতল পানি) বলে।

ব্রাইন দ্রবণ (Brine solution) \$ নির্দিষ্ট অনুপাতে দ্রাবক (পানি) এবং দ্রাব্য (লবণ) এর দ্রবণকে ব্রাইন সলিউশন বলে। হিমান্ধ (0°c) এর নিমু উক্ষতায় রূপান্তর ও সংরক্ষণের ক্ষেত্রে ব্রাইন ব্যবহার করা হয়। ব্রাইন Agent হিসেবে খাদ্য লবণ (Sodium chloride) (NaCl) এবং Calcium chloride (CaCl₂) ব্যবহার করা হয়। ব্রাইনে আ.গু, ১.২ হতে ১.৭ রাখা হয়। উৎকৃষ্ট ব্রাইনের ক্ষারত্ব ও অন্তব্ব মান (PH Value) ৯.০১। অর্থাৎ PH Value সাম্যাবস্থায় থাকে।

ব্রাইন প্রস্তুত ঃ ব্রাইন তৈরির সময় ট্যাঙ্কের অর্ধেক পানি দ্বারা পূর্ণ করে লবণের বস্তা ঝুলানো অবস্থায় ডুবিয়ে রাখা হয়। অতঃপর অ্যাজিটেটর (Agitator) দ্বারা পানিকে গতিশীল করা হয়। সমস্ত লবণ পানিতে দ্রবীজ্ত হলে বস্তা তুলে ফেলতে হয়।

ক্যালসিয়াম ক্লোরাইড ব্রাইন ($CaCl_2$) \$ এ লবণ ও পানি দ্রবণকে $CaCl_2$ Brine বলে। ওজন হিসেবে পানির সাথে 30% $CaCl_2$ দ্রবীভূত করলে এর Eutectic tempeature (সর্বনিমু জমাটান্ধ উষ্ণতা) -55° C হবে। সাধারণত এ ব্রাইন তৈরি করতে 1 গ্যালন পানির সাথে 2.5 গাউন্ড $CaCl_2$ মিশ্রিত করা হয়।

সোডিয়াম ক্লোরাইড ব্রাইন ঃ পানির সাথে সোডিয়াম ক্লোরাইডের দ্রবর্ণকে NaCl Birne বলে। গুজন হিসেবে পানির সাথে 23% NaCl দ্রবীভূত করনে তার Eutectic Temperature—21°C হবে।

 $CaCl_2$ -এর ব্রাইন বেশি ক্ষমতাসম্পন্ন। — 20° C-এর বেশি নিমু উষ্ণতার ক্ষেত্রে Calcium cloride brine ব্যবহার করা হয়। যেসব ক্ষেত্রে $CaCl_2$ নিষিদ্ধ সেক্ষেত্রে মাছ, মাংস ফ্রিজিং এ NaCl Brine ব্যবহার করা হয়।

প্রাইমারি হিমারকের শ্রেণিবিভাগ ঃ

(গ) হেলোকার্বন বা অর্গানিক রেফ্রিজারেন্ট (Halo carbon or organic refrigerant) ই

ক্রোরিন (Chlorine), ফ্রোরিন (Fluorine) এবং ব্রোমিন (Bromine) এ তিনটির যে কোন এক বা একাধিক মৌলের সমন্বয়ে গঠিত হেলোকার্বন রেফ্রিজারেন্ট। হেলোকার্বন রেফ্রিজারেন্ট ফ্রেয়ন, জেনেট্রন, আইসেট্রন, আর্কটন, ফ্রিজেন, ফরেন ইত্যাদি ট্রেড নামে বাজারজাত করা হয়।

হেলাইড বা ছেলোকার্বন অর্গানিক হিমায়ক হিসেবে পরিচিত কয়েকটির নাম, রাসায়নিক সংকেত এবং কুটনাঙ্ক হল-

হিমায়কের নাথার	রাসায়নিক নাম	রাসায়নিক সংকেত	কুটনাম্ব (সেঃ)
R-11	ট্রাইকোরামনোফ্রোরো মিথেন	CCl ₃ F	26
•	(Trichloromonofluour methne		:
R-12	ভাইক্লোরোডাইফ্লোরো মিথেন	CCl ₂ F ₂	- 29.8
	(Dichlorodifluoro methane)		
R-13	মনোক্রোরেট্রাইফ্রোরো মিথেন	CClF ₃	- 81.4
	(Monochlorotrifluoromethane)		
R-22	মনোক্লোরোডাইফ্লোরো মিথেন	CHClF ₂	- 40.8
	(Monochlorodifluoro methane)		
R-113	ট্রাইক্লোরেট্রাইফ্লোরো ইথেন	CCL ₃ CF ₃	47.68
•	(Trichiorotrifluoro ethane)		
R-123 .	ডাইক্রোরোট্রাইফ্রোরো ইথেন	CCl₂HCF ₃	23.80
	(Dichlorotrifluoro ethane)		
R-134a	টেট্রাফ্রোরো ইথেন	CF ₃ CFH ₂	-26.2
	(Tetrafluoro ethane)	CH ₂ FCF ₂	

(ম) অ্যাজিওট্রশিক রেট্রিজারেন্ট (Azeotropic refrigerant) ই একাধিক তরল জৈব যৌগের মিশ্রণে এ ধরনের হিমায়ক তৈরি হয়, যা সাধারণত কোন বিশেষ চাপ ও তাপমাত্রায় পৃথকু হয়ে যায় না। নিচু তাপমাত্রায় হিমায়ক যস্ত্রে এ ধরনের হিমায়ক যথেষ্ট ব্যবহৃত হয়। অ্যাজিওট্রশিক রেট্রিজারেন্টের নাম, রাসায়নিক সংকেত ও ক্ট্রনাঙ্ক নিম্নে দেয়া হল-

রেঞ্জিজারেন্ট মাঘার	রাসায়নিক নাম	রাসায়নিক সংকেত	কুটনান্ধ (°সেঃ)
R-500	হিমায়ক-12/152a	CCl ₂ F ₂ /CH ₃ CHF ₂	- 33.3
	73.8/26.2 ওজনের %		
R-501	হিমায়ক 22/12	CHClF ₂ /CCl ₂ F ₂	-41.1
	75/25 গুজনের %		
R-502	হিমায়ক- 22/115	CHCIF ₂ /CCIF ₂ CF ₃	- 45.6
	48.8/51,2 ওজনের %		

(৪) হাইড্রোকার্বন রেফ্রিজারেন্ট (Hydrocarbon Refrigerant) ই

হাইড্রোজেন ও কার্বন নিয়ে গঠিত যে সমস্ত জৈব যৌগ দাহ্য অথচ হিমায়কের অন্যান্য বৈশিষ্ট সন্তোষজনক সেগুলোকে হাইড্রোকার্বন রেফ্রিজারেন্ট হিসেবে গণ্য করা হয়। হাইড্রোকার্বন রেফ্রিজারেন্ট এক কালে ব্যবস্তৃত হলেও বর্তমানে সীমিত সংখ্যক শিল্প ও বাণিজ্যিক হিমায়নে ব্যবস্থৃত হয়। এ ধরনের কিছু হিমায়নের নাম, রাসায়নিক সংকেত ও ক্ষুটনাঙ্ক নিম্নে উল্লেখ করা হল-

রেফ্রিজারেন্ট নাঘার	রাসায়নিক নাম	রাসায়নিক সংক্তেত	কুটনাৰ (°মেঃ)
R-50	মিখেন-(Methane)	CH ₄	- 161.7
R-170	ইথেন (Ethane)	CH ₃ CH ₃	- 88.6
R-290	প্রপেন (Propane)	CH ₃ CH ₂ CH ₃	- 42.3

(চ) অজৈব যৌগ রেফ্রিজারেন্ট (Inorganic Compounds refrigerant) ই হেলোকার্বন রেফ্রিজারেন্ট উদ্ভাবনের পূর্বে অজৈব যৌগ হিমায়ক বা ইনঅর্গানিক রেফ্রিজারেন্ট ব্যাপক ব্যবহৃত হত। এ ধরনের কতকগুলো হিমায়কের নাম, রাসায়নিক সংকেত ও বিশেষ ব্যবহার ক্ষেত্র উল্লেখ করা হল—

রেফ্রিজারেন্ট নামার	হিমায়কের নাম	রাসায়নিক সংকেত	কুটনাম্ব (০ নেঃ)	ব্যবহার ক্ষেত্র
R-717	খ্যামোনিয়া (Ammonia)	NH ₃	-33.3	বরফ কল, হিমাগার, মৎস্য সংরক্ষণাগার ইত্যাদি স্টিম জেট রেফ্রিজারেশন
R-718	পানি Water	H ₂ O	100	স্টিম জেট রেফ্রিজারেশন
R-727	বাতাস (Air)		- 194.4	উড়োজাহাজে শীতাতপ নিয়ন্ত্রণ
R-744	কার্বন ডাই-অক্সাইড (Carbon di-oxide)	CO ₂	- 78.3	সমূদ্রগামী জাহাজে হিমায়ন, দ্রাই আইস উৎপাদনে এবং ট্রাঙ্গপোর্ট হিমায়নে।
R-764	সালফার ডাই-অব্রাইড (Sulpher di-oxide)	SO ₂	- 10	Ĭ

(ছ) অসম্পৃক্ত হাইড্রোকার্বন (Unsaturated Hydrocarbon) ঃ যে সমন্ত যৌগে কমপক্ষে একটি কার্বন দ্বিবন্ধন বা ত্রিবন্ধন থাকে এবং কার্বনের অবশিষ্ট বন্ধনন্তলো হাইড্রোজন দ্বারা পূর্ণ হয় সেগুলোকে অসম্পৃক্ত হাইড্রোকার্বন বলে। এক্ষেত্রে হাইড্রোকার্বন ইথিলিন ও প্রপিলিন বেজ দলভুক্ত হয় এবং পরমাণু সংখ্যা একের অধিক থাকে।

রেফ্রিজারেন্ট নাদার	রাসায়নিক নাম	রাসায়নিক সংকেত
R-1120	ট্রাইক্লোরো ইথিলিন	C ₂ H ₄ Cl ₃
•• • •	(Trichloro ethylene	
R-1150	ইথেলিন (Ethylene)	.C ₂ H ₄

অধিক ব্যবহৃত হিমায়ক

- (ক) অ্যামোনিয়া (হিমায়ক 717)
- (খ) হিমায়ক- 11
- (গ) হিমায়ক- 12
- (ঘ) হিমায়ক-22
- (ঙ) হিমায়ক-123
- (চ) হিমায়ক-502
- (ছ) হিমায়ক- 134a

৬.৫ হাইড্রোকার্বন হিমায়ক (Hydrocarbon refrigerant) 🖇

(ক) ক্লোরোফ্লোরো কার্বন CFC হিমায়ক ঃ ক্লোরিন, ফ্লোরিন ও কার্বন নিয়ে গঠিত ক্লোরোফ্লোরো কার্বন CFC হিমায়ক। এগুলোর মধ্যে কয়েকটির নাম ও রাসায়নিক সংকেত নিম্নে দেয়া হল-

হিমায়কের নাম	রাসায়নিক সংকেত
হিমায়ক- 11	CCl₃F
হিমায়ক−12	CCl ₂ F ₂
হিমায়ক−113	CCl ₂ F ₃ CClF ₂ /CCl ₃ CF ₂
হিমায়ক–114	CCIF ₂ CCIF ₂
হিমায়ক−115	CCIF2CF3

(খ) হাইদ্রোক্রোক্রোক্রোক্রারা কার্বন HCFC হিমায়ক ঃ হাইদ্রোজেন, ক্রোরিন, ফ্রোরিন ও কার্বন নিয়ে গঠিত হয় হাইদ্রোক্রো রাফ্রোক্রার্কন HCFC হিমায়ক। নিয়ে কয়েকটি হিমায়কের নাম ও রাসায়নিক সংকেত দেয়া হল—

হিমায়কের নাম	রাসায়নিক সংকেত
হিমায়ক22	CHCl₃F
হিমায়ক—193	CHCl₂CF₃

(গ) হাইড্রোফ্রোরো কার্বন HFC হিমায়ক ঃ হাইড্রোজেন, ফ্রোরিন ও কার্বন নিয়ে গঠিত হয় হাইড্রোফ্রোরো কার্বন HFC হিমায়ক। নিমে এরপ কয়েকটির নাম ও রাসায়নিক সংকেত দেয়া হল ঃ

হিমায়কের নাম	রাসায়নিক সংকেত
হিমায়ক-124	CHClCF ₃
হিমায়ক125	CHF ₂ CF ₃
হিমায়ক— 134a	CH ₂ FCF ₃

৬.৬ বিভিন্ন প্রকার হিমায়কের বৈশিষ্ট্য/গুণাবিশ (Describe the properties of different type of refrigerant) 8

ফ্রেয়ন—12 ঃ এ হিমায়কই সর্বাধিক প্রচলিত। এটি কর্ণিইনি, গদ্ধহীন, অদাহ্য, বিষাক্ত নয় এবং ধাতুর কোন ক্ষতি করে না। স্বাভাবিক বায়ুর চাপে একে তরল করা যায় এবং ঐ চাপে ফ্রেয়ন 12 এর স্কুটনাষ্ক –21.7° ফারেনহাইট (–29°C)।

সবরকম সংকোচক ও সবরকম তরলকারকেই এ হিমায়ক ব্যবহার করা সুবিধাজনক। তাই বাড়ি এবং শিল্পক্তের রেফ্রিজারেটর ও এয়ারকভিশনিং ব্যবস্থায়, পানি ঠাণ্ডা করার মেশিনে, খাদ্যকে হিমশীতল অবস্থায় জমিয়ে রাখার ব্যবস্থায়, আইসক্রীম বাজে, ঘরের এবং জানালায় বসানো এয়ারকভিশনারে এ হিমায়ক ব্যবহার করা হয়। এটি সব আকারের এবং সবরকম ক্ষমতাসম্পন্ন যাতায়াত সংকোচকে এবং ছোট আকারের ঘূর্ণায়মান সংকোচকে ব্যবহার করা হয়।

ক্রেয়ন-22 % এটার স্কুটনাষ্ক -41.4° ফারেনহাইট (-41°c)। যাতায়াতী সংকোচকযুক্ত সবরকম বাড়ির ও শিল্পক্ষেত্রের হিমায়ক যদ্র ও শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় ব্যবহার করা হয়। খুব কম তাপমাত্রায় (-90° সেন্ট্রিগ্রেড) প্রয়োজন হলে এ হিমায়ক ব্যবহার হয়। এর একটি বিশেষ সুবিধা এই যে, এর তাপমাত্রা খুব দ্রুত নামিয়ে আনা খায়। ফলে যেখানে যদ্রের আকার খুব ছোট, সেখানে ব্যবহারের উপযোগী।

ফ্রেয়ন – 12-এর তুলনায় ফ্রেয়ন – 22-এর কমেকটি সুবিধা আছে–

- 🕽। ফ্রেয়ন—12-এর সংকোচনের সরণ, তুলনায় কম। তাই ফ্রেয়ন –22-এ পাইপ লাইন কম লাগে।
- ২ : _30° সেন্ট্রিগ্রেড থেকে 40° সেন্ট্রিগ্রেড পর্যন্ত তাপমাত্রায় ফ্রেয়ন _22-এর বাষ্পায়কের চাপ বায়ুর চাপের চেয়ে বেশি কিছু ফ্রেয়ন _ 12-এর বাষ্পায়কের চাপ বায়ুর চাপের চেয়ে কম :

কিন্তু ফ্রেয়ন --22-এর অসুবিধা এই যে সংকোচকের নির্গম তাপমাত্রা অনেক বেশি তাই সংকোচকে পানি দিয়ে ঠাতা করার ব্যবস্থা থাকে ৷ ক) হিমায়ক – 134a ঃ হিমায়ক-12 এর স্থলাভিষিক্ত হল হিমায়ক 134a। ছোট হারমেটিক কম্প্রেসরের সাথে অধিক ব্যবহার উপযোগী। রাসায়নিক সংকেত CH₂ FCF₃ যার স্কুটনাস্ক (-26.2)° সেঃ এটা নন টক্সিক এবং অদাহ্য। তেলের সাথে কিছুটা মিশে কুলিং এর জন্য খুবই ভাল। এটা বাণিজ্যিক ও বড় এয়ারকন্তিশনিং প্ল্যান্টের সাথে ব্যবহার করার জন্য ICI গবেষণা চালাচ্ছে এবং অনেক অগ্রণাডিও হয়েছে। হিমায়ক—134a এর সবচেয়ে বড় সুবিধা হল যে, এটা হিমায়ক —12 ব্যবহৃত হিমায়ন যন্ত্রের তেল পরিবর্তন করে ব্যবহার করা যায়। হিমায়ক 134a ইতোমধ্যে সারা বিশ্বে ব্যবহৃত হচ্ছে। রেফ্রিজারেটর, চেস্ট ফ্রিজার, ডিসপ্লে কেস, ডিসপ্লে ফ্রিজার এমনকি সেন্ট্রাল এয়ারকন্তিশনিং প্ল্যান্টে ব্যাপক ব্যবহৃত হচ্ছে। ইউরোপ ও আমেরিকায় ইতোমধ্যে কয়েক হাজার টন হিমায়ক 134a ব্যবহৃত হয়েছে।

শ্রেম্বন - 502 8 48.8% ওজনের ফ্রেয়ন- 22 এবং 51.2% ফ্রেয়ন-115 মিশিয়ে ফ্রেয়ন- 502 তৈরি হয়। কুটনাঙ্ক- 50.1° ফারেনহাইট। এতে ফ্রেয়ন 12- এর তুল্য নির্সম তাপমাত্রায় ফ্রেয়ন- 22- এর তুল্য শীতল করার ক্ষমতা পাওয়া যায়, তাই কম তাপমাত্রায় সংরক্ষণ এবং খাদদ্রেষ্য জমিয়ে রাখার কাজে ব্যবহৃত হয়।

হিমায়ক 123 ${\bf 8}$ হিমায়ক 11 এর স্থলাভিষিপ্ত হিমায়ক হল হিমায়ক 123। এটা HCFC কম্পাউগু যার রাসায়নিক সংকেত CHCl $_2$ CF $_3$ এবং এটা SUVA নামে অধিক পরিচিত। পরবর্তী সময়ে এটাকে পরিবর্তনের দরকার হবে। হিমায়ক 123 স্ফুটনাম্ব বায়ুমগুলীয় চাপে 27.1° সেঃ এবং আণবিক গুজন 153। হিমায়ক 11 এর চেয়ে কম টক্সিক ODP = 0.02 এবং GWP অন্যান্য গুণাবলি হিমায়ক 11 এর মতই। সেন্ট্রাল এয়ারকন্তিশনিং এর সেন্ট্রিকিউগাল কম্প্রেসরে ব্যবহার করা হয়।

(খ) বিমায়ক – 69S ঃ বিমায়ক – 22 এবং বিমায়ক 502 এর স্থলাভিষিক্ত বিমায়ক হল R–69S, যা গুণাগুণ বৈশিষ্ট্যে প্রায় R – 502 এর মত কিন্তু এটা অদাহ্য, অবিষাক্ত এবং ঈষৎ টপ্পিক, স্কুটনাঙ্ক (–43)° সেঃ। রেফ্রিজারেটিং ইফেক্ট প্রায় R-502 এর মত কিন্তু কম্প্রেসর চালাতে খরচ কম (Less power consumption)। সব দিক বিবেচনায় এটা প্রচলিত কম্প্রেসর তেলের সাথে মিশে।

ISCEON-69S নামে পরিচিত এ হিমায়কের সবচেয়ে বড় সুবিধা হল যে, হিমায়ক 502 ব্যবহৃত হিমায়ন চক্রে সরাসরি ব্যবহার করা যায়। কোন কিছুই পরিবর্তন বা পরিবর্ধন করা লাগে না। হিমায়ক 69S হিমায়ক –22 এবং 502 এর সাথে নিম্নে ছকে দেখা যাবে–

Parameter	R-69S	R-22	R-502
Suction Pressure (bar) সাকশন চাপ	3.0	2.8	3.1
Discharge Pressure (bar) ডিসচার্জ চাপ	11.25	10.5	10.6
Pressure ratio	3.74	3.75	3.4
Discharge Temperature (°C)	73.0	77.6	61.6
Motor winding Temp (°C)	67.6	81.6	74.4
Power consumption (watts)	652	630	676
Refrigerating effect (watts)	1578	1270	1580
COP	2.42	2.02	2.34
ICE Production (kg/24-hrs)	420	400	419

জ্যামোনিয়া (NH₃) ঃ বর্ণহীন গ্যাসে বিশেষ রকমের ঝাঁঝালো গন্ধ আছে যার সাহায্যে জ্যামোনিয়াকে চেনা যায়। বায়ুমঞ্জীয় চাপে এর ক্ষুটনান্ধ-28° ফারেনহাইট এবং হিমাঙ্ক-107.86° ফারেনহাইট জ্বলে প্রচুর পরিমাণে দ্রাব্য। বাতাসের সঙ্গে মিশলে হঠাৎ জ্বলে উঠার সম্ভাবনা থাকে। বাষ্পীভবনের লীন তাপ অনেক বেশি। 18° ফারেনহাইট উষ্ণতায় 555 বি.টি.ইউ/পাউন্ত। তাই অপেক্ষাকৃত ছোট মেশিনে বেশি শৈত্য সৃষ্টি করা যায়।

অ্যামোনিয়া গ্যাস বিষাজ, তাই যাতে লিক না করে, সেদিকে বেশি লক্ষ রাখতে হবে; বিশেষ করে কার্যকরী চাপ যেখানে 125 থেকে 200 পাউভ/ইঞ্জি²।

তরলকারকে (Condenser) শীতল করার মাধ্যম হিসেবে ঠান্তা পানি ব্যবহার করা হয়। শিল্পক্ষেত্রে, যেখানে অনেক বেশি পরিমাণ শীতলতা সৃষ্টি করতে হবে সেখানে প্রায়ই অ্যামোনিয়া ব্যবহৃত হয়।

ফ্রিক্স (Freezol) 3 রাসায়নিক নাম আইসোবুটেন (Isobutane), রাসায়নিক সংকেত (CH_3) $_3$ CH_1 এটি বাতাসের সংস্পর্শে জ্বলে উঠে এবং সংকোচকের পিচ্ছিলকারী তেলের সঙ্গে মিশে যায়। মিষ্টি গদ্ধ, ধাতুর সঙ্গে রাসায়নিক ক্রিয়া করে না কিন্তু রাবারের সঙ্গে রাসায়নিক ক্রিয়া করে হিমায়ক হিসেবে ব্যবহৃত হয়।

মিখাইল ক্লোৱাইড (CH3Cl) \$ প্রমাণ চাপে—10.6° ফারেনহাইট উচ্চতায় ফুটে (Boil)। একে সহজেই তরলে পরিণত করা যায়। লীন তাপের পরিমাণ বেশি, 178 বি.টি.ইউ. প্রতি পাউন্ডে।

—10° ফারেনহাইট উষ্ণতা পর্যন্ত চাপ, বায়ুমণ্ডলীয় চাপের বেশি হয়। ফলে হিমায়কের যাত্রাপথে কোন লিক থাকলে, বাইরের বাতাস ভেতরে প্রবেশ করে না, হিমায়ক বাইরে বেরিয়ে আসে। তাই সাবান পানির বুদ্বুদ্ দিয়ে লিক পরীক্ষা করা যায়। মিথাইল ক্লোরাইডের গন্ধ বিরক্তিকর নয়, তাই অল্প লিক করলে বুঝা যায় না। তাই গন্ধ সৃষ্টির জন্য 1% এক্রোলিন (Acrolein) মেশানো হয়ে থাকে।

অতিসৃদ্ধ ছিদ্র বের করার জন্য অ্যালকোহলকে জ্বালানি রূপে ব্যবহার করা বাতি ব্যবহার করা হয়। অ্যালকোহলের বর্ণহীন শিখা, সামান্য মিথাইল ক্লোরাইডের সংস্পূর্লে এলে সবুজ রঙের হয় এবং বেশি মিধাইল ক্লোরাইডে উজ্জ্বল নীল রঙের শিখা হয়।

অধিক পরিমাণে মিথাইল ক্লোরাইড বাতাসে মিশলে তা হঠাৎ জ্বলে উঠার সদ্ধাবনা থাকে। তদ্ধ অবস্থায় মিথাইল ক্লোরাইড ধাতুর সঙ্গে ক্রিয়া করে না কিন্তু আর্দ্র অবস্থায় জিঞ্জ, অ্যালুমিনিয়াম ও ম্যাগনেসিয়ামের সঙ্গে রাসায়নিক ক্রিয়া করে। তাই মিথাইল ক্লোরাইডকে হিমায়ক রূপে ব্যবহার করলে এ তিনটি ধাতুকে ব্যবহার করা উচিত নয়। মিথাইল ক্লোরাইডে রাবার দ্রবীভূত হয়, তাই রাবারের গ্যাসকেট বা প্যাকিং ব্যবহার করা যায় না।

সব মিলিয়ে মিথাইল ক্লোরাইড হিমায়ক হিসেবে ব্যবহারের উপযুক্ত এবং বছকাল ধরেই ব্যবহার হয়ে আসছে। কিন্তু এর দহন প্রবণতা ও বিষক্রিয়ার জন্য কিছু কিছু শহরে এর ব্যবহার নিষিধ্ধ।

ইথাইল ক্লোরাইড ($C_2H_5C_1$) ঃ এটি অনেক ক্ষেত্রে মিথাইল ক্লোরাইডের মত। বায়ুমগুলীয় চাপে এর কুটনাঙ্ক 55.6° ফারেনহাইট এবং সঙ্কট 360.5° ফারেনহাইট 784 পাউড/ইঞ্জি চাপে। বর্ণহীন তরল, গঙ্গে ঝাঝ আছে এবং স্থাদে মিষ্টি। ধাতুর সঙ্গে রাসায়নিক ক্রিয়া করে না, ফলে সবরকম ধাতু ব্যবহার করা যায়। এতে রাবারের যৌগ গলে যায়, তাই সীসার গ্যাসকেট ব্যবহার করতে হয়।

খাদ্যদ্রব্য সংরক্ষণের জন্য যে নিমুমানের তাপমাত্রা দরকার, তার জন্য ইপ্থাইল ক্লোরাইডকে বায়ুমণ্ডলের চাপের চেয়ে কম চাপে বাঙ্গীভূত করতে হয়। এতে অসুবিধা এই যে কম চাপের অংশে লিক করলে তা ধরা পড়ে না এবং বাতাস বা নজেল যন্ত্রের ভিতর প্রবেশ করে।

আবার বেশি চাপের অংশে অর্থাৎ তরলকারক অজ্ঞলের চাপের পরিমাণ কম থাকে। বায়ুমণ্ডলের চাপের চেয়ে ৬ থেকে ২০ পাউড/ইঞ্চি² বেশি। এর ফলে যাতায়াতি সংকোচক ব্যবহার করা হয়। পিক ধরার জন্য সামান্য পরিমাণে গন্ধ দ্রব্য মেশানো হয়। লিকের জায়গা খুঁজে বের করার জন্য ভিতরের চাপ বাড়িয়ে সাবানের বুদ্বৃদ্ ব্যবহার করা হয়। অ্যাপকোহলের শিখাও ব্যবহার করা যেতে পারে। ইথাইল ক্রোরাইডের সংস্পর্শে এলে শিখা সবুজ রঙের হয়। বাষ্পীভবনের চাপ খুব কম হওয়ার জন্য, ইথাইল ক্রোরাইডকে বাড়ির হিমায়ন যন্ত্রে ব্যবহার করা হয় না।

৬.৭ হিমায়ক নামকরণ (The designation system for refrigerants) ঃ

আন্তর্জাতিকভাবে হিমায়ককে 'R' অক্ষর হারা প্রকাশ করা হয়, যেমন— R-11, R-12, R-114 ইত্যাদি। সাধারণত মিধেন জাতীয় হিমায়ককে দুই ডিজিট হারা, এবং ইথেন জাতীয় হিমায়ককে তিন ডিজিটের অক্ষর হারা প্রকাশ করা হয়। হাইড্রো-কার্বন ও হ্যালো-কার্বন হিমায়ককে যে সমস্ত নম্মর হারা প্রকাশ করা হয়, তার একটি বিশেষ অর্থ বহন করে। অর্থাৎ সর্বভানের সংখ্যাটি হারা হিমায়কের ভিতর কতকওলো ফ্রোরিন (F) আছে, তা বুঝায়। ভান দিক থেকে হিতীয় অর্থাৎ দশমের ঘরের সংখ্যাটি হাইড্রোজেন (H) অপেক্ষা ১ বেশি হবে। ভান দিক থেকে তৃতীয় অর্থাৎ শতক ঘরের সংখ্যাটি শূন্য হবে, তখন এটিকে বাস শেয়া হয়। মিথেন বা ইথেন টাইপ যাই হোক না কেন, একটি হিমায়কের সাধারণ রাসায়নিক সূত্র প্রকাশ করা হয় $C_m H_n Cl_P F_q$ েন n+p+q=2m+2

এখানে,

m = কার্বন পরমাণুর সংখ্যা

n = হাইড্রোজেন প্রমাণুর সংখ্যা

p = ক্লোরিন পরমাণুর সংখ্যা এবং

q = ফ্রোরিন পরমাণুর সংখ্যা

উপরের বর্ণনা মতে একটি হিমায়কের নম্বর R(m-1)(N+1)(q)

আডভান্সভ রেফ্রিজারেশন আভ এয়ারকভিশনিং-১৪

মনে করি, একটি ডাইক্রোরোটেট্রাফ্রুরো-ইথেন হিমায়কের রাসায়নিক সূত্র এবং নদন বের করতে হবে। আমরা দেখতে পাই, এই হিমায়কের মধ্যে

ক্লোরিন পরমাণুর সংখ্যা P = 2

ফ্রোরিন প্রমাণুর সংখ্যা, q = 4

এবং হাইডোজেন প্রমাণুর সংখ্যা n = 0

আমরা জানি, n + p + q ≈ 2m + 2

বা, 0+2+4=2m+2

বা, m ≈ 2

অর্থাৎ কার্বন পরমাণুর সংখ্যা = ২

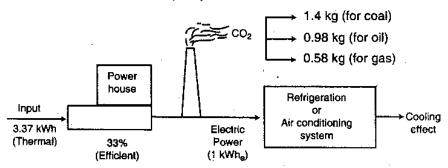
সুতরাং ডাইক্রোরোট্রৌফ্রোরো-ইখেন হিমায়কের রাসায়নিক ফর্মুলা হবে $C_2Cl_2F_4$ হিমায়কের নম্বর হবে R (2-1) (0+1) (4) অথবা R-114 ।

৬.৮ হিমায়কের ব্যবহার ক্ষেত্রসমূহ (Mention the application of commonly used refrigerants) ই হিমায়কের ব্যবহার ক্ষেত্র ঃ

হিমায়কের নম্বর	কম্প্রে সর	ব্যবহার ক্ষেত্র	
হিমায়ক 11	সেক্ট্রিফিউগাল	২০০ থেকে ২০০০ টন ক্ষমতাসম্পন্ন সেন্ট্রাল এয়ারকভিশনিং প্লান্ট।	
R-12 হিমায়ক-12	রেসিপ্রোকেটিং, রোটারি, সেক্রিফিউগাল	আবাসিক শীতক, ফ্রোজেন ফুড স্টোরেজ, আইসক্রীম কেবিনেট, ওয়াটার কুলার, ডিহিউমিডিফারার, আইস মেকার, আইসক্রীম ফ্যান্টরি, কোন আইসক্রীম মেকার, ওয়ার্ক-ইন-কুলার, ডিসপ্লে কেইসেস, অটোমোবাইল এয়ারকন্ডিশনিং, এয়ারকন্ডিশনিং প্ল্যান্ট ইত্যাদি।	
R-22 হিমায়ক-22	রেসিপ্রোকেটিং, রোটারি	উইন্ডো এয়ারকন্তিশনার, প্যাকেজ টাইপ এয়ারকন্তিশনার, স্প্রিট টাইপ এয়ারকন্তিশনার, কোন্ড স্টোরেজ ইত্যাদি।	
R-123 হিমায়ক-123	সেন্ট্রিফিউগ্যাল কম্প্রেসর	সেন্ট্রাল এয়ারকন্ডিশনিং প্ল্যান্ট।	
R-502 হিমায়ক-502	রেসিপ্রোকেটিং	হিমাগার, প্লেট ফ্রিজার, কন্ট্রাক্ট ফ্রিজার, ডেইরি রেফ্রিজারেশন ইত্যাদি।	
R-717 হিমায়ক-717	রেসিপ্রোকেটিং	আইস প্ল্যান্ট, হিমাগার, ফিস প্রসেসিং প্ল্যান্ট ইত্যাদি।	
R-134a হিমায়ক-134a	রেসিপ্রোকেটিং, রোটারি	আবাসিক, শীতক, চেস্ট ফ্রিজার, আইসক্রীম কেবিনেট।	

৬.৯ ঘনীভূবন চাপ, বাস্পীভূবন তাপমাত্রা, বয়লিং পয়েন্ট, ত্রিনিটকেল তাপমাত্রা এবং S.P. আয়তন এর রেফ্রিন্সারেশন এর উপর প্রভাব ব্যাখ্যা কর (Explain the effects of condensing pressure, evaporating temparature, boiling point, critical temparature and specific volume on refrigeration cycle) 8

- चনীভূবন চাপ (Condensing pressure) ই কন্ডেন্সার এর চাপ যত কম হবে এনার্জি খরচ তত কমবে। এবং কম্প্রেসরে discharge. এ চাপ যত কম হবে কম্প্রেসর এর ক্যাপাসিটি তত বৃদ্ধি পাবে।
- বাল্পীভূবন তাপমাত্রা (Evaporating temparature) ৪ নির্দিষ্ট ঘনীভূবন তাপমাত্রার সাথে যদি বাল্পীভূবন তাপমাত্রা
 বাড়ানো হয়, তাহলে রেফ্রিজারেন্ট ইফেয় বৃদ্ধি পায় এবং যত বাল্পীভ্বন তাপমাত্রা কমানো হয় তাহলে রেফ্রিজারেন্ট ইফেয় কমে
 যায়। আবার যদি ঘনীভূবন তাপমাত্রা বৃদ্ধি পায় তাহলে রেফ্রিজারেন্ট ইফেয় কমে যায়।



- বয়শিং পরেন্ট (Boiling point) ঃ হিমায়কের বয়শিং পরেন্ট হিমায়ন চক্রের জন্য একটি গুরুত্বপূর্ণ বিষয়, বয়শিং পরেন্ট হিমায়কের একটি গুরুত্বপূর্ণ বৈশিষ্ট যেটার উপর নির্জর করে এটি কোন ধরনের হিমায়ন চক্রে ব্যবহার করা হবে। অধিক নিমু তাপমাত্রার জন্য যে হিমায়ন চক্র ব্যবহার করা হয় সেই চক্রে সাধারন অধিক নিমু বয়শিং পয়েন্টের হিমায়ন ব্যবহার করা হয়।
- সন্ধট তাপমাত্রা (Critical Temparature) ঃ সাধারণত সন্ধট তাপমাত্রা বৃদ্ধির সাপে সাপে হিমায়কের আয়তনিক রেফ্রিলারেটিং ধারণ ক্ষমতা কমে যায়। এটা নির্ভর করে নির্দিষ্ট বাঙ্গীভূবন তাপমাত্রায় বাঙ্গীয় ঘনত্ত্বের উপর।
- নির্দিষ্ট আয়তন (Specific Volume) ঃ হিমায়কের নির্দিষ্ট আয়তন চাপের উপর প্রভাব ফেলে। চাপের উপর প্রভাব পড়ার
 কারণে এটি কম্প্রেসরে ক্ষমতার উপর ও প্রভাব পড়ে। বাল্পীয় ঘনত্ব যত কম হবে ইভাপোরেটরে প্রেসার ড্রপ তত বাড়বে। একটি নির্দিষ্ট
 কম্প্রেসর এর জন্য সাকশন (suction) ঘনত্ব যদি কমে যায় তাহলে মাসফ্রোরেট (Merss flowrate) এবং কুলিং ক্যাপাসিটিও কমে যায়।

৬.১০ বিভিন্ন ধরনের রেফ্রিজারেন্ট (হিমায়ক) সিলিভারের কালার কোড (Mention the color code of different refrigerant cylinder) ঃ

রেফ্রিজারেন্ট সিলিভারের কালার কোড (The color code of refrigerant cylinder) 3 ASHRAE অর্থাৎ আমেরিকান সোসাইটি অব হিটিং রেফ্রিজারেটিং অ্যান্ড এয়ারকভিশনিং ইঞ্জিনিয়ার্স এর অনুমোদিত রেফ্রিজারেটিং সিলিভার কালার কোড অনুসারে রেফ্রিজারেন্ট ভর্তি করা উচিত। এতে সিস্টেমে ভূপক্রমে অন্য গ্যাস চার্জ করার সম্ভাবনা কমে যায়। তবে গ্যাস চার্জ করার পূর্বে গ্যাস এর প্রেসার এবং অ্যানিয়েন্ট তাপমাত্রা পরিমাপ করে চাপ তাপমাত্রা চার্টের সাথে মিলিয়ে গ্যাসের ধরন (নম্বর) সম্বন্ধে নিশ্চিত হওয়া যায়। নিয়ে ASHRAE এর কালার কোড দেয়া হল-

"ASHRAE" STANDARD COLOR CODE (USA)

চিত্র ঃ ৬,১ শীতল করণের প্রণাদি

বেফ্রিজারেন্ট সিলিভার কালার কোড

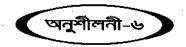
সিশিভার	রঙ
সাদফার ডাই-অক্সাইড (SO ₂)	কালো ও রুপালি
মিপাইল ক্লোরাইড (CH₁CI)	ক্মলা
ফ্রেমন– 12 (Ccl ₂ F ₂)	সাদা
ফ্রেয়ন 22 (CHclF ₂)	সরুজ
अन्त्रन – 11 (Ccl₃F)	কমলা
ফ্রেয়ন– 502 (R-22 + R-115) মিশ্রণ	লাল
ফ্রেন– 113 (Ccl ₃ CF ₃)	নীল
ফ্রেমন– 114 (CclF ₂ CclF ₂)	পাৰ্পল
ज्यात्मानिया (NH3)	হালকা নীল
অক্সিজেন (O ₂)	কালো

৬.১১ হিমায়ক ও হিমায়ক সিণিভার স্থানান্তর (Handling), সংরক্ষণ (Storage) ও নিরাপভা নিয়মাবলি (Describe the handling and storage procedure of refrigerant and refrigerant cylinder) ৪

রেঞ্জ্রিজারেন্ট সিলিভার (Refrigerant's cylinder) ই মাপ অনুযায়ী উচ্চচাপ স্বাভাবিক তাপমাত্রা ও পরিমাণমত হিমায়ক তরল অবস্থায় ভর্তি করে স্টোরেজ বা তাৎক্ষণিক কাজে ব্যবহারের জন্য যে পাত্র ব্যবহার করা হয়, তাকে হিমায়ক সিলিভার বলে। পাত্রটির আকার সিলিভারাকৃতির অর্বাৎ সম্প্র লখা অংশটুকু প্রায় সমব্যাসের। তাই একে সিলিভার বলা হয়। পাত্রটি ইস্পাত লৌহের দ্বারা মজবুতভাবে তৈরি। উপরিভাগের ভাল্ভ নিয়ন্ত্রণ করে হিমায়ক সরবরাহ বদ্ধ ও চালু করা হয়। কাজের ও আকারের দিক দিয়ে বিচার করে একে দুই ভাগে ভাগ করা হয়। যথা—

- (ক) স্টোরেজ সিলিভার (Storage cylinder) ১ এটা আকারে লমা, চিকেন ও বড় এবং অপেক্ষাকৃত শক্তিশালী ও ভারী। দীর্মদিন অধিক হিমায়ক সংরক্ষণে এ জাতীয় সিলিভার উপযোগী।
- (খ) সার্জিসিং সিলিভার (Service cylinder) 3 আকৃতিতে মোটা ও খাটো, ধারণক্ষমতা কম, অপেক্ষাকৃত হালকা। এর সাহাধ্যে সহজে হিমায়ক স্থানাভর করা যায়। ছোট ইউনিটে রেফ্রিজারেন্ট চার্জ করতে ব্যবহার করা হয়।

হিমায়ক সিলিভার শুষ্ক, নিরাপদ, ভাল ভেন্টিলেশন যুক্ত স্থানে রাখতে হয়। যতদূর সম্ভব সিলিভারগুলো উল্লেখ (খাড়া) অবস্থায় রাখা ভাল। কোন অবস্থাতে বাঁকা করে বা ঘুরিয়ে স্থানান্তর গ্রহণযোগ্য নয়।


চিত্র ঃ ৬.২ হিমায়ক সিলিভার

৬.১২ রেফ্রিজারেন্ট সিলিভার হস্তান্তর ও নিরাপত্তার বিধিবিধান (Mention the safety requirement when handling and working with refrigerant) \$

নিয়ে বিধি অনুসারে সিলিন্ডার ব্যবহার করতে হবে।

- (ক) কখনও সিলিভার ড্রপ দেয়া যাবে না। এমনকি একটির সাথে অন্যটির আঘাতপ্রাপ্ত অবাঞ্ছিত।
- (খ) পিফটিং ম্যাগনেট, দড়ি, চেইন দিয়ে সিলিন্ডার উত্তোলন করা যাবে না। ক্রেন ও প্লাটফরম সহযোগে উত্তোলন করতে হবে।
- (গ) ভাল্ভকে রক্ষা করার জন্য ব্যবহারকালীন ব্যতীত সর্বদা ভাল্ভ ক্যাপ ব্যবহার করা দরকার।
- ্ঘ) সিলিভারে অতিরিক্ত গ্যাস পূর্ণ করা নিষেধ। নির্মাতার নির্ধারিত পরিমাপ অনুযায়ী ওঞ্জনে পূর্ণ করতে হবে।
- (৬) কোন অবস্থাতেই মিশ্রিত গ্যাস সিলিভারে ভর্তি করা যাবে না। একাধিক গ্যাস সিলিভারে মিশানো মারাত্মক অপরাধ।
- (চ) রোলার বা সাপোর্ট হিসেবে সিলিন্ডার ব্যবহার করা অনিরাপদ।
- (ছ) কোন কারণে ও অবস্থাতে সিলিভার উত্তপ্ত করা যাবে না।
- ্জে) সিলিন্ডার ভাল্ড ধীরে ধীরে খুলতে হবে। অনির্ধারিত রেঞ্জ বা চাবি দিয়ে সিলিন্ডার ভাল্ড খোলা নিষেধ।
- (ঝ) সিলিন্ডারের যে অংশে রেণ্ডলেটর বা ইউনিয়ন সংযোজন করতে হবে সেই অংশের থ্রেড মিলিয়ে সংযোগগুলো ছাপন করা উচিত।
- (ঞ) ভিন্ন ভিন্ন গ্যাসের জন্য ভিন্ন রেগুলেটর ও গেইজ ব্যবহার করা অনুচিত। এক সিলিভারে হিমায়ক অন্য সিলিভারের প্রবেশ করানো আইনবিরোধী। কারণ এতে গ্যাস নির্বাচনী করা অসম্ভব হবে।
- (ট) হিমায়ক সিলিন্ডার মেরামত করা যাবে না। সিলিন্ডার ও ভাল্ভসমূহ পরিবর্তনযোগ্য নয়।
- অয়েল, গ্যাসোলিন প্রভৃতি দক্ষকারী পদার্থের নিকট সিলিভার রাখা যাবে না।
- (ড) শিলিভার একটানা অনেক দিন যাবং ভিজা জায়গায় রাখা যাবে না। এতে লবণ, পানি স্প্রে করা মারাত্মক।
- (ঢ) পূর্ণ ও খালি সিলিন্ডার নির্বাচনে সন্দেহ পরিহার করার জন্য পৃথক করে রাখতে হবে এবং Name plate লাগাতে হবে।

> অতি সংক্ষিম্ত প্রশ্নোন্তর ঃ

১। হিমায়ক কী?

ঠিছম । বিক্রিজারেন্ট ইংরেজি শব্দ। এর বাংলা প্রতি শব্দ হিমায়ক। "হিমায়ন পদ্ধতিতে তাপ শোষণ, বহন এবং অন্যত্র নিয়ে তা বর্জন যার ঘারা সম্পন্ন করা হয়, তাকে হিমায়ক বলে।" হিমায়ক বা রেফ্রিজারেন্ট এমন এক ধরনের প্রবাহী, যা কোন বস্তুর বা স্থান থেকে তাপ অপসারণের জন্য ব্যবহৃত হয়।

২। বছৰ ব্যবহৃত কয়েকটি হিমায়কের নাম ও রাসায়নিক সংক্তে দিখ।

ಶ হল 🗗 বহুল ব্যবহৃত কয়েকটি হিমায়কের নাম ও রাসায়নিক সংকেত নিয়ে দেয়া হল ঃ

হিমায়কের নাম	কর নাম রাসায়নিক সংক্তেত	
১। অ্যামোনিয়া	NH ₃	(R-717)
২। কার্বন ডাই-অক্সাইড	CO ₂	(R-744)
৩। সালফার ডাই-অক্সাইড	SO ₂	(R-764)
৪। মিথাইল ক্লোরাইড	CH ₃ Cl	(R-40)
৫। ট্রাইক্লোরো মনোফ্রুরো ইথেন	CCl ₃ F.	(R-11)
৬। ডাইক্লোরোডাইফ্লুরো মিথেন	CCl ₂ F ₂	(R-12)
৭। মনোক্লোরোডাইফুরো মিথেন	CHCIF ₂	(R-22)
৮। রেফ্রিজারেন্ট-২২/১১৫	CHClF ₂ /CClF ₂ CF ₃	(R-502)

৩। হিমায়কের প্রয়োজনীয়তা দিব।

ঠিতর বিফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং সিস্টেমের প্রধান উপাদান হিমায়ক । হিমায়ক ছাড়া এ সিস্টেম কল্পনাও করা যায় না। হিমায়ক বা রেফ্রিজারেন্ট এমন এক ধরনের প্রবাহী যা কোন বন্তুর বা ছান থেকে তাপ অপসারণের জন্য ব্যবহৃত হয়। অর্থাৎ যে ঠান্তা বা শীতলতার জন্য আমরা রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং সিস্টেম ব্যবহার করি, সেই শীতলতা আনয়ন করে হিমায়ক। সুতরাং বলা যায়, হিমায়ক ছাড়া রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং সিস্টেম অচল এবং হিমায়কের প্রয়োজনীয়তা অনুষ্ঠীকার্য।

8। হিমায়কের প্রধান দুটি শ্রে**ণিবিভাগ দিখ**।

ঠিছল 🗿 হিমায়ক প্রধানত ২ প্রকার। যথা–

- (i) প্রাইমারি হিমায়ক। যেমন- R-11, R-12।
- (ii) সেকেন্ডারি হিমায়ক। যেমন- পানি, ব্রাইন।

ে। পৃথিবীর প্রথম হিমায়কের নাম কী এবং কোপায় ব্যবহৃত হয়?

[বাকাশিবো-২০০৯]

্রিভরাত্রী পৃথিবীর প্রথম হিমায়কের নাম "ইথার" (ETHAR)। এটা আমেরিকার ইঞ্জিনিয়ার জ্যাকব পারকিন্স (JACOB PERKINS) এর হস্তচালিত বাষ্প সংকোচন হিমায়ন যত্ত্বে ব্যবহৃত হয়।

১। শিল্প ও বাণিজ্যিক হিমায়নে কী কী হিমায়ক ব্যবহৃত হতে পারে?

্ঠিতর ব্লি । বাণিজ্যিক হিমায়নে সাধারণত নিমুলিখিত হিমায়কণ্ডলো ব্যবহৃত হতে পারে–

- (i) R-50 (মিখেন) ব্যবহার সীমিত i
- (ii) R-170 (ইথেন) ব্যবহার সীমিত।
- (iii) R-290 (প্রপেন) ব্যবহার সীমিত।
- (iv) R-502
- (v) R-123
- (vi) R-717 (অ্যামোনিয়া)
- (vii) R-11
- (viii) R-69S (NON CFC) ইত্যাদি।

৭। রেসিপ্রোকেটিং কম্প্রেসরের সাথে ব্যবহৃত হতে পারে এমন পাঁচটি হিমায়কের নাম দিব।

্ঠিতর বিসপ্রোকেটিং কম্প্রেসরের সাথে ব্যবহৃত হতে পারে এমন পাঁচটি হিমায়কের নাম হল− R-12, R-22, R-502, R-134a, R-69S

৮। ট্রাইজোরো মনোফুরো মির্বেন (Trichloromonofluoro methane) এর হিমায়ক নম্বর, রাসায়নিক সংক্তেও ও স্কুটনান্ধ লিখ।

(उँडव ह

হিমায়ক নম্বর	R-11
রাসায়নিক সংকেত	CCl₃F
ক্ষুটনাঙ্ক সে.	26°C

৯। প্রাইমারি হিমায়ক কী?

ইছর ছী যদি কোন হিমায়ক সরাসরি লীন তাপ বা সুগুতাপের মাধ্যমে অন্য কোন বস্তু বা পদার্থকে ঠাগু করে, তাহলে তাকে প্রাইমারি হিমায়ক বলে। যেমন− হিমায়ক R-22, হিমায়ক R-22 অ্যামোনিয়া ইত্যাদি।

১০। হিমায়নের ক্ষুটনাত্ব ও সুপ্ততাপ কিরূপ হওয়া উচিত? অথবা, হিমায়কের সুপ্ততাপ কীরূপ হওয়া উচিত?

[বাকাশিবো-২০১৫(পরি)]

শ্রিষ্ট হিমায়কের স্কুটনাঙ্ক বায়ুমগুলীয় চাপের উধের্ব হওয়া উচিত। কারণ বায়ুমগুলীয় চাপের উধের্বর চাপের স্কুটনাঙ্কবিশিষ্ট হিমায়ক ঘারা পরিচালিত সিস্টেমে বেশি কার্যদক্ষতা পাওয়া যাবে এবং পরিচালনা ব্যয় কম হবে।
হিমায়কের সুপ্ততাপ গ্রহণ এবং বর্জনের ক্ষমতা বেশি হওয়া বাঞ্জ্নীয়। কারণ এর তাপ শোষণ বা বর্জন ক্ষমতা প্রতি কেজি
হিসেবে হিসাব করা হয়। যদি তার সুপ্ততাপ ক্ষমতা বেশি হয়, তবে কম গ্যাস ব্যবহার করা যায়। এতে হিমায়কের ব্যয় বাবদ খরচ কম হবে।

১১ ৷ নতুন উদ্ভাবিত তিনটি হিমায়কের নাম শিখ ৷

ঠিছর 🔊 নতুন উদ্ভাবিত তিনটি হিমায়কের নাম হল−

- (i) SUVA, HCFC-123
- (ii) Forane-134a
- (iii) R-69S

১২। ২টি পুরাতন হিমায়ক এবং এদের স্থ্যাভিষ্টিক হিমায়কের নাম পিখ।

[বাকাশিবো-২০১০ (পরি)]

ಶ ভর 🔊 ২টি পুরাতন হিমায়ক এবং এদের স্থলাভিষিক্ত হিমায়কের নাম নিম্নে দেয়া হল–

পুরাতন হিমায়ক	স্থলাভিষিক্ত হি্যায়কের নাম
R-11	R-123
R-12 and R-22	R-134a,

১৩। চারটি ভেলের নাম **লিব** ।

উত্তর 🚱 চারটি তেলের নাম নিম্নরূপ—

- (i) Mineral Oil মিনারেল অয়েল
- (ii) Polyolester –পশিস্টার
- (iii) Alkyl-Benzene অ্যালকাইল-বেনজিন।
- (iv) POE পিওই ইত্যাদি :

১৪। ২টি হিমায়কের নাম এবং ভেলের নাম লিব। নতুন উদ্ভাবিত ২টি হিমায়কের নাম ও রাসায়নিক সংকেত লিব।

উছর 🖇 ২টি হিমায়কের নাম এবং তেলের নাম—

সনাতন হিমায়ক আধুনিক হিমায়ক		তেলের নাম
R-12	R-134a	Polyolester, Alkyl-Benzene
R-22	R-134a, SUVA	Polyolester Polyolester

নতুন উদ্ভাবিত ২টি হিমায়কের নাম ও রাসায়নিক সংকেত এবং যে হিমায়কের পরিবর্তে তার নাম—

উদ্ভাবিত হিমায়ক	রাসায়নিক সংকেত	যে হিমায়কের পরিবর্তে
R-134a	CF₃CH₂F	R-12 and R-22
R-123	CHCl ₂ CF ₃	R-11

১৫। R-11 ७ R-12-এর রাসায়নিক নাম লেব।

[বাকাশিবো-২০০৯]

छेडच ह

 $R-11 \rightarrow$ ট্রাইক্রোরো মনোক্রোরো মিখেন (Ccl_3F)

 $R-12 \rightarrow$ ডাইকোরোড্রাইফ্রু মিথেন (Ccl_2F_2)

১৬। হিমায়ক—134a এর সঙ্গে ব্যবহৃত তৈলের নাম শিখ। অথবা, আধুনিক হিমায়কের সঙ্গে ব্যবহৃত তৈলের নাম শিখ।

[বাকাশিবো-০৩,০৫,০৬]

[বাকাশিবো-২০০৪]

্**উষ্টর ঃ** তেলের নাম, Polyolester, Alkyl, – Benzene.

১৭। পৃথিবীর প্রথম হিমায়ন যন্ত্রের নাম কী?

[বাকাশিবো-২০০৯]

্ঠিছর । পৃথিবীর প্রথম হিমায়ক হল "ইথার" (Ether), যা পারকিন্স (Perkins) এর হস্তচালিত বাষ্প সংকোচন হিমায়ন যন্ত্রে ব্যবহৃত হয়।

১৮। R-22 হিমায়কের সুস্ততাপ বেশি হওয়া সত্ত্বেও আবাসিক রেফ্রিজারেটর ব্যবহৃত হয় না কেন?

[বাকাশিবো-২০০৪]

ঠিছর । এটার স্কুটনাষ্ক –41.4° ফারেনহাইট (–41°c)। যাতায়াতী সংকোচকযুক্ত সবরকম বাড়ির ও শিল্পক্ষেত্রের হিমায়ক যন্ত্র ও শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় ব্যবহার করা হয়। খুব কম তাপমাত্রায় (–90° সেন্ট্রিগ্রেড) প্রয়োজন হলে এ হিমায়ক ব্যবহার হয়। এর একটি বিশেষ সুবিধা এই যে, এর তাপমাত্রা খুব দ্রুত নামিয়ে আনা যায়। ফলে যেখানে যন্ত্রের আকার খুব ছোট, সেখানে ব্যবহারের উপযোগী।

> সংক্ষিদ্ত প্রস্লোচর ঃ

🕽 । 🛮 প্রাইমারি ও সেকেভারি হিমায়কের মধ্যে তিনটি পার্থক্য লিখ ।

[বাকাশিবো-২০১০ (পরি)]

😎 🗷 প্রাইমারি ও সেকেভারি হিমায়কের মধ্যে তিনটি পার্থক্য নিদ্ধরূপ–

প্রাইমারি হিমায়ক	সেকেন্ডারি হিমায়ক
যদি কোন হিমায়ক সরাসরি লীন তাপ বা সুগুতাপের	যদি কোন হিমায়ক অন্য কোন হিমায়ক কর্তৃক শীতল হয়ে
মাধ্যমে অন্য কোন বস্তু বা পদার্থকৈ ঠাণ্ডা করে, তাহলে	নিজে অন্য কোন পদার্থকে অনুমেয় তাপের মাধ্যমে ঠাণ্ডা
তাকে প্রাইমারি হিমায়ক বলে।	করে, তাহলে তাকে সেকে তা রি হিমায়ক বলে।
প্রাইমারি হিমায়ক হিসেবে সাধারণত R-12, R-22 ইত্যাদি	সেকেন্ডারি হিমায়ক হিসেবে সাধারণত পানি, ব্রাইন ইত্যাদি
ব্যবহৃত হয়।	ব্যবন্ধত হয় ৷
সাধারণত ডাইরেক্ট এক্সপানশন সিস্টেমে এ হিমায়ক	সাধারণত ইনডাইরেক্ট এক্সপানশন সিস্টেমে এ হিমায়ক
ব্যবহার করা হয়। যেমন- উইন্ডো এসি, স্প্রিট টাইপ এসি	ব্যবহৃত হয় যেমন- সেন্ট্রাল এসি সিস্টেম, হিমাগার, বরফ
ইত্যাদি।	কল ইত্যাদি।

২। পাঁচটি হিমারকের নাম, রাসায়নিক সংকেত এবং প্রতিটির ব্যবহার ক্ষেত্র দিব।

🌫 🗷 🗗 পাঁচটি হিমায়কের নাম, রাসায়নিক সংকেত এবং প্রতিটির ব্যবহার ক্ষেত্র নিম্নরূপ–

नर	হিমায়কের নাম -	রাসায়নিক সংকেত	ব্যবহার ক্ষেত্র
۱۷	Forane-11 (@ग्रन-11)	CCl ₃ F	২০০ থেকে ২০০০ টন ক্ষমতাসম্পন্ন সেক্ট্রাল এসি প্ল্যান্ট
ই।	Forane-12 (ফ্রেয়ন-12)	CCl ₂ F ₂	রেফ্রিজারেটর, ওয়াটার কুলার, আইসক্রিম মেকার, ডিসপ্লে কেস, অটোমোবাইল এয়ারকভিশনিং ইত্যাদি।
৩।	Forane-22 (ফ্রেমন-22)	CClF ₂	উইন্ডো এসি, স্প্রিট টাইপ এসি, প্যাকেজ টাইপ এসি, কম ক্ষমতাসম্পন্ন এসিপ্ল্যান্ট ইত্যাদি।
8	Forane-123 or SUVA HCFC-123	CHCl₂CF₃	বেশি ক্ষমতাসম্পন্ন সেন্ট্রাল এয়ারকন্ডিশনিং প্ল্যান্ট।
¢ i	Forane-134a or SUVA HFC-134a	CF₃CH₂F	রেফ্রিজারেটর চেস্ট ফ্রিজার, আইসক্রিম মেকার, উইন্ডো এসি ইত্যাদি।

৩। অর্গানিক ও ইনঅর্গানিক হিমায়কের মধ্যে পার্থক্য দিব।

ভিতর 🖟 অর্গানিক ও ইনঅর্গানিক হিমায়কের মধ্যে পার্থক্য নিমন্ধপ-

অৰ্গানিক হিমায়ক	গর্বন বা যৌগে হিমায়কের গুণাগুণ বিদ্যমান আছে তাদেরকে বলে ইনঅর্গানিক হিমায়ক।	
ক্লোরিন, ফ্লোরিন এবং ব্রোমিন এ তিনটির যে কোন এক বা একাধিক মৌলের সমন্বয়ে গঠিত হয় হ্যালোকার্বন বা অর্ণানিক হিমায়ক।		
অর্গানিক হিমায়ক কিছুদিন পূর্ব পর্যন্ত ব্যাপকভাবে ব্যবস্কৃত হও।		
ফরেন-11, ফরেন-12, ফরেন- HCFC-123, ফরেন- HFC- 134a ইত্যাদি অর্গানিক হিমায়কের উদাহরণ।	অ্যামোনিয়া, পানি বাতাস, কার্বন ডাই-অক্সাইড (CO ₂) সালফার ডাই-অক্সাইড (SO ₂) ইত্যাদি ইনঅর্গানিক হিমায়কের উদাহরণ।	

8। বাস্পীর চাপ ও ঘনীভবন চাপের মধ্যে পার্থক্য বেশি হলে কী কী অসুবিধা হয়?

😎 🕏 বাস্পীভবন চাপ ও ঘনীভবন চাপের মধ্যে পার্থক্য বেশি হলে নিম্নলিথিত অসুবিধার সৃষ্টি হবে। যেমন-

- (i) বাষ্পীভবন চাপ ও ঘনীভবন চাপের মধ্যে পার্থক্য বেশি হলে ইভাপোরেটরে সঠিক পরিমাণ ঠাণ্ডা পাওঁয়া যাবে না।
- (ii) কম্প্রেসরের উপর চাপ কমবে বা বাড়বে।

ĭ

- (iii) কন্ডেন্সারে হিমায়কের ঘনীভবন সঠিক পরিমাণে হবে না।
- (iv) ইভাপোরেটরে বা কুলিং কয়েলে হিমায়ক সঠিক পরিমাণে বাস্পীভূত হবে না।
- (v) কম্প্রেসরের উপর চাপ বেশি হলে তা নট্ট হয়ে যেতে পারে।

৫। হিমায়ক 502 এবং এর ছলাভিষিক্ত হিমায়ক 69S এর মধ্যে চারটি পার্থক্য শিখ।

🌫 ভর 🚱 হিমায়ক 502 এবং এর স্থলাভিষিক্ত হিমায়ক 69S এর মধ্যে চারটি পার্থক্য নিম্নরূপ—

नर	হিমায়ক 502	হিমায়ক 69S
۱ د	এ হিমায়ক CFC যুক্ত পুরাতন হিমায়ক ৷	এ হিমায়ক CFC মৃক্ত আধুনিক হিমায়ক।
२।	এ হিমায়কের স্কুটনাৰ (-45.6)°C।	এ হিমায়কের স্ফুটনান্ধ (-43.3)°C।
91	এ হিমায়ক ব্যবহৃত সিস্টেমের কম্প্রেসর চালাতে বিদ্যুৎ খরচ বেশি হয়।	এ হিমায়ক ব্যবহৃত সিস্টেমের কম্প্রেসর চালাতে বিদ্যুৎ খরচ কম হয়।
8 1	এ হিমায়ক পরিবেশের শত্রু হিমায়ক।	এ হিমায়ক পরিবেশের বন্ধু হিমায়ক।

ইমায়ক 69S এর পাঁচটি ভাল বৈশিষ্ট্য আলোচনা কর।

{বাকাশিবো-২০০৭, ২০১০, ২০১২ (পরি), ২০১০}

(উভন্ন 🗗) হিমায়ক 69S এর পাঁচটি ভাল বৈশিষ্ট্য নিমে আলোচনা করা হল—

- এ হিমায়কের সবচেয়ে বড় বৈশিষ্ট্য হচ্ছে এটা সিএফসি মৃক্ত আধুনিক হিমায়ক, যা পরিবেশের কোন ক্ষতি করে না।
- (ii) এ হিমায়কের আরেকটি প্রধান বৈশিষ্ট্য হচ্ছে এটা হিমায়ক-502 ব্যবস্কৃত হিমায়ক চক্রে সরাসরি ব্যবহার করা যায়। অর্থাৎ কোন কিছু পরিবর্তন বা পরিবর্ধন করার প্রয়োজন হয় না।
- (iii) এ হিমায়ক ব্যবহৃত হিমায়ন সাইকেলের কম্প্রেসর চালাতে কম বিদ্যুৎ খরচ হয়। ফলে ব্যয় হ্রাস পায়।
- (iv) এ হিমায়ক অদাহ্য, অবিষাক্ত এবং নন টক্সিক। অর্থাৎ হিমায়ক হওয়ার সবগুলো বৈশিষ্ট্য এর মধ্যে বিদ্যমান।
- (v) এ হিমায়কের কুটনান্ধ (-43.3)°C সুপ্ততাপ 195 kJ/kg at 15°C, ODP = 0.042 এবং GWP = 1.26 $^{\circ}$

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যাড এয়ারকভিশনিং–১৫

৭। হিমায়কের ভৌত ত্পাবলিসমূহ লিখ।

অথবা, এফটি আদর্শ হিমায়কের ভৌত ত্থাবলি কী কী?

অথবা, আদর্শ রেফিজারেন্টের ভৌত ত্থাবলি কী?

[বাকাশিবো-২০১৪]

[বাকাশিবো-২০০৪, ০৭, ১২]

😕 ভর 🖁 যেসব গুণাগুণ বা বৈশিষ্ট্য থাকলে কোন হিমায়ককে আদর্শ হিমায়ক হিসেবে গণ্য করা যায়, সেগুলো নিচে দেয়া হল−

- ১। ক্ষয়কারক নয় (Non-corrosive) া
- ২। সান্দ্রতা কম হওয়া উচিত (Low viscosity)।
- ৩। তাপ পরিবাহিতা বেশি হওয়া উচিত (High thermal conductivity)।
- 8 ৷ লিকেজ টেভেসি কম হওয়া উচিত (Low leakage tendency) ৷
- ে। উচ্চ মাত্রায় ইলেকট্রিক্যাল রেজিস্ট্যান্স থাকা উচিত (Dielectric strength)।
- ৬। ব্যয় কম হওয়া উচিত (Low cost) ।
- ৮। হিমায়কের রাসায়নিক গুণাবণিসমূহ শিখ। অধ্বা, একটি আধুনিক হিমায়কের রাসয়নিক গুনাবশির বর্ণনা দাও।

[বাকাশিবো-২০০৬]

[বাকাশিবো-২০০৩, ০৫, ০৬]

ভិচন 🛭

- 🕽 । রেফ্রিজারেন্ট দাহ্য না হওয়া/অদাহ্য (Non-flammable) ।
- ২। বিষাক্ত হওয়া উচিত নয় (Non toxic)।
- ৩। পানির সাথে অদ্রবণীয় (Non soluble with water) !
- 8। তেলের সাথে হিমায়ক সহজেই মিশে যাওয়া উচিত (Miscibility) !
- ে তেলের সাথে বিক্রিয়া ঘটবে শা (Does not reaction with oil) i
- । হিমায়কের থার্মোডাইনামিক ভণাবলি কী কী লিখ।

ठिठन है

- ১। নিচু ফুটন্ত তাপমাত্রা (Low boiling poit)।
- ২ ৷ নিচু ঘনীভবন চাপ (Low condensing pressure) ৷
- ৩ ৷ নিচু আপেক্ষিক আয়তন (Low specific volume) ৷
- ৪। উচ্চ সুপ্ততাপ (High latent heat)।
- 🔁 । উচ্চ সংকট তাপ ও চাপ (High critical pressure and temperature) ।
- ৬। ফ্রিজিং তাপমাত্রা, কুলিং কয়েলের তাপমাত্রা থেকে অনেক কম হবে।
- ৭। বায়ুমণ্ডলের চাপ থেকে ইভাপোরেটর কন্ডেন্সার চাপ বেশি হওয়া উচিত।
- ১০। কোন কোন তথের অধিকারী হলে একটি হিমায়ককে আদর্শ হিমায়ক বলা যায়? অথবা, একটি আদর্শ হিমায়কের বৈশিষ্ট্যতলো বর্ণনা কর। অথবা, একটি আদর্শ হিমায়কের বৈশিষ্ট্যতলো লিখ। অথবা, আদর্শ হিমায়কের কী কী তথাবলি থাকার প্রয়োজন তা লেখ।

[বাকাশিবো-২০০৯]

[বাকাশিবো-২০১১]

শুভর 🕙 নিম্নলিখিত গুণের অধিকারী হলে একটি হিমায়ককে আদর্শ হিমায়ক বলা যায়। যথা—

- ১। স্কুটনাম্ক ঃ হিমায়ক বায়ুমগুলীয় চাপে ও সাধারণ তাপমাত্রায় বাস্পীভূত হবে।
- ২। হিমান্ত ঃ অতি নিম্ন তাপমাত্রায় হিমায়ক জমাট বাঁধবে।
- ত। স্বনীভবনের চাপ ঃ স্বল্প চাপে ও সাধারণ উষ্ণতায় হিমায়ক স্বনীভূত হবে।
- ৪। সভট উষ্ণতা : এর সভট উষ্ণতা কম হওয়া ভাল ।
- **৫। সুপ্ততাপ ঃ** সুপ্ততাপ শোষণের ক্ষমতা অনেক বেশি হওয়া দরকার।
- **৬। আপেক্ষিক আয়তন ঃ** এর আপেক্ষিক আয়তন বেশি হওয়া দরকার :
- ৭। আপেক্ষিক তাপ : তরল অবস্থায় হিমায়কের আপেক্ষিক তাপ কম এবং বাষ্পীয় অবস্থায় হিমায়কের আপেক্ষিক তাপ বেশি হবে।

- ৮। তাপ পরিবাহিতা ঃ এর তাপ পরিবাহী তণ বেশি থাকা দরকার ।
- 🔈। অঠালভা 🛭 এর আঠালতা কম হবে।
- ১০। বিদ্যুৎ পরিবাহিতা ঃ হিমায়ক বিদ্যুৎ পরিবাহী হবে না।
- ১১। বিষাক্ততা ঃ এর বিষাক্ত আচরণ থাকবে না।
- ১২ । **শিখা উৎপাদন গুণ ঃ** এটা শিখা উৎপাদন করবে না।
- ১৩। বিক্রিয়া ঃ আদর্শ হিমায়ক বিক্রিয়াহীন হবে।
- ১৪। স্থায়িত ঃ এটা কখনও বিশ্লিষ্ট ও বিনষ্ট হবে না।
- ১৫। গন্ধ ঃ হিমায়কের দুর্গন্ধ বা কটু গন্ধ থাকবে না।
- ১৬। **ছিদ্র নির্দেশ প্রকণতা ঃ** এর ছিদ্র নির্দেশ করার গুণ থাকবে।
- ১৭। তেলের সাধে সম্পর্ক ঃ এটা তেলের সাথে বিক্রিয়া করবে না এবং মিশ্রিত হবে না।
- ১৮ | COP ঃ এর উন্নতমানের COP গুণ থাকবে !
- ১৯। অবক্ষয়কারিতা ঃ এটা Non-corrosiveness হবে।
- ২০। **দহন ও বিক্ষোরণ ঃ ভাল** হিমায়ক কখনো প্রজ্বলিত বা বিক্ষোরিত হবে না।
- ্বাকশিৰো-২০০৮,২০০৯,২০১০, ২০১১ (পরি), ২০১২ (পরি), ২০১৪) ১১। আধুনিক হিমায়কের ৪টি বৈশিষ্ট্য লেখ। অথবা, আদর্শ হিমায়কের কী কী গুণাবলি থাকার প্রয়োজন তা লেখ। অথবা, আধুনিক রেফ্রিজারেন্টের চারটি সুবিধা শিখ। অথবা, তিনটি আধুনিক হিমায়কের গুণাবলি লেখ। অধবা, আধুনিক হিমায়কের সুবিধান্তলো লেখ।

[বাকশিবো-২০১১] [বাকাশিবো-২০০৪]

ि उडि

- ১। দামে কম হবে
- ২ ৷ সহজে পাওয়া যাবে
- বিষাক্ত হওয়া যাবে না
- ৪ ৷ কটু গদ্ধ যুক্ত হবে না ইত্যাদি ৷
- ১২। হ্যালো কার্বন রেফ্রিজারেন্টের নমর প্রদানের নিয়ম দেব। অথবা, হ্যালোকার্বন রেফ্রিক্সারেন্টের নামারিং করার পদ্ধতি উদাহরণসহ লিখ।

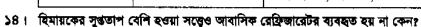
[বাকাশিবো-২০০৪,২০০৮] [বাকাশিবো-২০০৪]

ভিষয় 🗗 হেলোকার্বন বা অর্ণানিক রেফ্রিজারেট (Halo carbon or organic refrigerant) 🕻 ক্লোরিন (Chlorine), ফ্রোরিন (Fluorine) একং ব্রোমিন (Bromine) এ তিনটির যে কোন এক বা একাধিক মৌলের সমস্বয়ে গঠিত হেলোকার্বন রেফ্রিজারেন্ট। হেপোকার্বন রেফ্রিজারেন্ট ফ্রেয়ন, জেনেট্রন, আইন্ট্রেন, আর্কটন, ফ্রিজেন, ফরেন ইড্যাদি ট্রেড নামে বাজারজাত করা হয়।

হেলাইড বা হেলোকার্বন অর্গানিক হিমায়ক হিসেবে পরিচিত কয়েকটির নাম, রাসায়নিক সংকেত এবং ফুটনাঙ্ক হল–

হিমায়কের নামার	রাসায়নিক নাম	রাসায়নিক সংকেত	কুটনান্ধ (সেঃ)
R-11	ট্রাইক্লোরোমনোক্লোরো মিথেন	CCl ₃ F	26
	(Trichloromonofluoro methane		
R-12	ভাইক্রোরোডাইফুরো মিথেন	CCl ₂ F ₂	- 29.8
	(Dichlorodifluoro methane)	•	
R-13	মনোক্লোরেট্রাইফ্রুরো মিথেন	CCIF ₃	- 81.4
	(Monochlorotrifluoro methane		
R-22	মনোক্রোরোডাইফুরো মিবেন	CHCIF ₂	- 40.8
-	. (Monochlorodifluoro methane)		

অ্যাডভাঙ্গড রেফ্রজারেশন অ্যান্ড এয়ারকভিশনিং


হিমায়কের নামার	রাসায়নিক নাম	রাসায়নিক সংকেত	কুটনাঙ্ক (সেঃ)
R-113	ট্রাইক্লোরেট্রাইফ্রুরো ইথেন	CCL₃CF₃	47.68
	(Trichlorotrifluoro ethane)	1	
R-123	ডাইক্লোরেট্রাইফ্লুরো ইথেন	CCl ₂ HCF ₃	23.80
:	(Dichlorotrifluoro ethane)		
R-134a	টেট্রাফ্রুরো ইথেন	CF ₃ CFH ₂	-26.2
	(Tetrafluoro ethane)	CH ₂ FCF ₂	·

১৩। চিকিৎসা ক্ষেত্রে হিমায়কের চারটি ব্যবহার পিথ।

[বাকাশিবো-২০০৭]

ठेष्ठत ह

হিমারকের শ্বর	ক েশ্ৰস র	ব্যবহার ক্ষেত্র
R-22	রেসিপ্রোকেটিং, রোটারী	উইন্ডো এয়ারকভিশনার, প্যাকেজ টাইপ এয়ারকভিশনার, স্প্রিট টাইপ এয়ারকভিশনার, কোন্ড স্টোরেজ ইত্যাদি।
R-123	সেন্ট্রিফিউগ্যাল কম্প্রেসর	সেন্ট্রাল এয়ারকন্ডিশনিং প্ল্যান্ট।
R-502	রেসিপ্রোকেটিং	হিমাগার, প্লেট ফ্রিজার, কন্ট্রাক্ট ফ্রিজার, ডেইরি রেফ্রিজারেশন ইত্যাদি।
R-717	রেসিপ্রোকেটিং	আইস প্ল্যান্ট, হিমাগার, ফিস প্রসেসিং প্ল্যান্ট ইত্যাদি।

্ঠিছর । হিমায়কের সৃগুতাপ বেশি হওয়া সত্ত্বেও আবাসিক রেফ্রিজারেটর হিসাবে ব্যবহার করা হয় না কারণ এটি হাই প্রেসার রেফ্রিজারেন্ট।

১৫। হিমায়ক-১১ এর ব্যবহার বন্ধ করার বৈজ্ঞানিক যুক্তি কী?

[বাকাশিবো-২০০৪]

ভিতর টি হিমায়ক 11 এর ছলাভিষিক্ত হিমায়ক হল হিমায়ক 123। এটা HCFC কম্পাউত যার রাসায়নিক সংকেত $CHCl_2$ CF_3 এবং এটা SUVA নামে অধিক পরিচিত। পরবর্তী সময়ে এটাকে পরিবর্তনের দরকার হবে। হিমায়ক 123 ফুটনাঙ্ক বায়ুমগুলীর চাপে 27.1° সেঃ এবং আগবিক ওজন 153। হিমায়ক 11 এর চেয়ে কম টক্সিক ODP = 0.02 এবং GWP অন্যান্য গুণাবলি হিমায়ক 11 এর মতই। সেন্ট্রাল এয়ারকন্তিশনিং এর সেন্ট্রিফিউগাল কম্প্রেসরে ব্যবহার করা হয়।

> त्रष्टवाशूनक श्रश्नावि :

১। হিমায়কের নামকরণ পদ্ধতি বর্ণনা কর।

অথবা, R-12 এবং R-717 হিমায়কের বাণিজ্যিক নামারের ভাৎপর্য শিখ 🛭

[বাকাশিবো-২০০৯]

ঠিচর সংক্রেড 🕏 অনুচ্ছেদ ৬.৭ নং **দ্র**ষ্টব্য।

বিভিন্ন ধরনের হিমায়কের কালার কোড লিখ।

উচর সংক্তেভ অনুচেছদ ৬.১০ নং দুষ্টব্য।

৩। হিমায়ক ও হিমায়ক সিলিভার স্থানান্তর, সংবক্ষণ ও নিরাপন্তার নিয়মাবলি শিখ।

উচর সংক্রেড 🔊 অনুচেছদ ৬.১০, ৬.১১ নং **দ্র**ষ্টব্য ।

ক্লোরোফ্লোরো কার্বন গু পরিবেশ বান্ধব হিষায়ক (CFCs and environmental friendly refrigerants)

৭.০ ভূমিকা (Introduction) 8

CFC এর সংক্ষিপ্ত রূপ হলো ক্লোরোফ্লোরো কার্বন বা ক্লোরিন (Cl₂), ক্লোরিন (F) এবং কার্বন (C) এই তিনটির সমন্বয়ে গঠিত হিমায়ক। CFC যুক্ত হিমায়কের মধ্যে সবচেয়ে ক্ষতিকর উপাদান্টি হলো ক্লোরিন (Cl₂) গ্যাস। আমরা সাধারণত জানি যে, কোহিয়েশন অ্যান্ড অ্যান্ডিয়েশন, কোহিয়েশন মূলত নিজেদের মধ্যে যুক্ত হবার প্রবর্ণতা আর এ্যান্ডিয়েশন হলে অপরের সাথে যুক্ত হবার প্রবণতা। এক্ষেত্রে ক্লোরিন গ্যাসকে বায়ুমণ্ডলে ছেড়ে দিলে আশেপাশের কোন গ্যাসের সাথে যুক্ত না হয়ে সরাসরি উপরের 🔏 দিকে উঠে যায়, অবশেষে ওজোনের (O₃) সাথে বিভিন্ন ঘটায়। যার ফলে ওজোন স্তরের ক্ষতি সাধন করে। যার ফলে পৃথিবীর বায়ুমণ্ডলের তাপমাত্রা ক্রমান্বয়ে বেড়ে যাচ্ছে। পৃথিবীর তাপমাত্রা যেন বৃদ্ধি না পায় সে জন্য পরিবেশের বন্ধু হিমায়ক উদ্ভাবন করেছে। যাকে মূলত HFC বলে সম্বোধন করে থাকে, HFC হলো হাইড্রোফ্রেগরো কার্বন, ক্লোরিনের পরিবর্তে হাইড্রোজেন যুক্ত করা হয়েছে। আলোচ্য অধ্যায়ে CFC, পরিবেশ বান্ধব আধুনিক হিমায়ক, ODS, ODP, GWP, ওজোন স্তর, গ্রীনহাউজ ইফেক্ট, মন্ট্রিল প্রোটকল, ক্লীন এয়ার অ্যাক্ট ইত্যাদি সম্পর্কে বিস্তারিত জানা যাবে।

৭.১ ক্লোরোফোরো কার্বন (State what is meant by the CFC) 8

ক্রোরিন, ক্রোরিন ও কার্বন নিয়ে গঠিত হিমায়ককে ক্লোরোফ্লোরো কার্বন হিমায়ক বা সংক্ষেপে CFC হিমায়ক বলে। এদের মধ্যে কয়েকটির নাম ও রাসায়নিক সংকেত নিমে দেয়া হল-

হিমায়কের নাম	রাসায়নিক সংকেত
R – 11	CCl₃F
R – 12	CCl ₂ F ₂
R – 113	CCl ₂ F ₃ CCl F ₂
R – 114	CCIF2 CCI F2
R – 115	CCl F ₂ CF ₃

৭.২ পরিবেশ বান্ধব আধুনিক হিমায়ক (State what is meant by environmental friendly refrigerant) 8

পথিবীর তাপমাত্রা বৃদ্ধির জন্য যতগুলো কারণ বা সহায়ক আছে তাদের মধ্যে একটি হল কিছু সনাতন হিমায়ক ৷ এ সমস্ত হিমায়কের কিছু ভাল বৈশিষ্ট্য থাকা সত্ত্বেও ওজোন স্তরের ক্ষতি করে বলে এদেরকে পরিবেশের শত্রু গ্যাস বলে। নতুন উদ্ভাবিত কোন হিমায়কের যদি প্রচলিত হিমায়কের ভাল বৈশিষ্ট্যগুলো এবং পরিবেশের জন্য শুমকি না হয়, তাহলে সেগুলোকে পরিবেশের বন্ধু হিমায়ক বা Environmental friendly gas বলে ৷

আধুনিক হিমায়ক বলতে সাধারণত পরিবেশের জন্য ক্ষতিকারক নয় এমন নতুন উল্পাবিত হিমায়ককে বুঝানো হয়। CFC এবং HCFC ফ্রপের হিমায়কগুলো কমবেশি ওজোন স্তরের ক্ষতি করে, তাই বিজ্ঞানীরা কিছু পুরানো হিমায়কের পরিবর্তে নতুন হিমায়ক উদ্ভাবন করেন। এগুলোকে CFC's replacement refrigerant বলা হয়। আর যদি সম্পূর্ণ নতুন হিমায়ক আবিষ্কার ও ব্যবহৃত হয়, তাহলে সেগুলোকে নতুন হিমায়ক বা নিউ রেফ্রিজারেন্ট (New refrigerant) বলে। নতুন উদ্বাবিত Replacement refrigerant এবং নতুন রেফ্রিজারেন্টকেই আধুনিক হিমায়ক বলা যায়। যেমন− R – 123 (CHCl₂ CF₃), R – 290, R – 134a (CF₃ CH₂ F), R – 600a ইত্যাদি।

আধুনিক হিমায়কের সুবিধা ঃ

যে সকল অসুবিধার কারণে পুরানো CFC হিমায়কগুলো বাদ দেয়া হচ্ছে তা থেকে নতুন উদ্ভাবিত হিমায়কগুলোর সুবিধা বুঝা যায়। সুবিধাগুলো হল-

- ১। সবচেয়ে বড় সুবিধা যে, এগুলো ওজোন ন্তরের ক্ষতি করে না। পরিবেশের ক্ষতি করে না বলে এগুলোকে 'পরিবেশের বন্ধু হিমায়ক' বলে।
- বিকোরক নয়।
- ৩। অদাহ্য।
- 8। সমপরিমাণ শক্তি ব্যায়ে অধিক কাজ করা যায়। হিমায়ক 69S হিমায়ক 502 এর তুলনায় RE বেলি WD কম সূতরাং COP বেশি।
- ৫। ODP এবং GWP কম।
- ৬। আকাশে কম সময়ের অন্তিত্ব (Less atmospheric life time)

৭.৩ পরিবেশ বাদ্ধব/আধুনিক হিমায়কের তালিকা (List the environmental friendly refrigerant) 8

নিম্নে কয়েকটি পরিবেশ বান্ধব হিমায়কের তালিকা দেয়া হল-

- > 1 R − 123 (CH Cl₂ CF₃)
- ₹ 1 R 134a (CF₃ CH₂ F)
- ♥ | R 600a (C₄ H₁₀)
- $8 \vdash R 290 (C_3 H_3)$
- @ | R 404A (R 125/R 143a/R 134a) (CHF₂ CF₃/CH₃ CF₃/CF₃ CH₂ F)

৭.8 ODS, ODP এবং GWP কী (State what is meant by ODS, ODP and GWP) &

ODS → ODS এর পূর্ণ অর্থ Ozone depletion substance. ওজোন ন্তর হ্রাস বা ক্ষয়ের জন্য যে সমস্ত রাসায়নিক বন্তুসমূহ দায়ী তাদেরকে ওজোন ক্ষয়ের উপাদান (Ozone depletion substance) বলে।

 $\mathrm{ODP} o \mathrm{ODP}$ এর পূর্ণ অর্থ Ozone depletion potential, যার মাধ্যমে গুজোন গুরের ক্ষতিকারক প্রভাব নির্ণয় করা হয় ৷

GWP o GWP এর পূর্ণ অর্থ Global warming potential. CFC বা অন্যান্য বস্তু যা সরাসরি ভূপৃষ্ঠের তাপমাত্রা বৃদ্ধিও জন্য দায়ী তার প্রভাব বা মেজারমেন্ট নির্ণয় করাকে GWP বলে।

৭.৫ ওজোন ন্তর ক্ষয়, গ্রীনহাউজ ইফেক্ট এবং গ্রোবাল ওয়ার্মিং (Explain ozone layered depleting, Green house effect and global warming)

গুজোন দেয়ার ডিপ্রেটিং (Ozone layered depleting) ঃ সূর্য থেকে পৃথিবীতে আসা অভিবেশুনি রশ্মির শতকরা ৯৯ ভাগই ওজোন তার শোষণ করে এবং বাকি মাত্র ১ শতাংশ পৃথিবীতে আসে। ওজোন তার না থাকলে এ রশ্মির শতকরা ১০০ ভাগই পৃথিবীতে চলে আসত। ওজোন তার যে কোন কারণে ক্ষয় বা হ্রাস পেলে তা পরিবেশের জন্য বিপর্যয় বয়ে আনে। কিন্তু ইদানীং বিজ্ঞানীরা লক্ষ করেছেন যে, ওজোন তারে ওজনের পরিমাণ হ্রাস পাচ্ছে। আর এ হ্রাস বা ক্ষয়ের জন্য যে সকল রাসায়নিক বস্তুসমূহ দায়ী তাদেরকে ওজোন ক্ষয়ের উপাদান (Ozone depleting substance) বা সংক্ষেপে ODS বলে। যে সমন্ত ODS ঘারা ওজোন তার ক্ষয় হয় সেগুলো হল CFC, HCFC, HFC ইত্যাদি। CFC এবং HFC গ্রুপের হিমায়ক ওজোন তারের বড় ধরনের ক্ষতিসাধন করে। তবে সমীক্ষায় দেখা যায় যে, কার্বন ডাই-অক্সাইড ওজোন তারের যে পরিমাণ ক্ষতি করে CFC তার এক হাজার তণ বেশি করে। CFC এর ক্রোরিন এটম ক্ষতিকারক প্রধান উপাদান।

শ্রীনহাউজ প্রতিক্রিরা (Green house effect) ই পৃথিবীর বুকে গাছপালা, লতা ও ঘাস ইত্যাদি কারণে দেখতে অনেকটা সবুজ মনে হয়। এজন্য পৃথিবীকে গ্রীনহাউজ বলে। মানুষ তার চারপাশে প্রাকৃতিক যা কিছু পায় তার সবই পৃথিবীর ভারসাম্যতা রক্ষা করার জন্য। ভারসাম্যতা রক্ষা করার জন্য পৃথিবীর ভাপমাত্রা ও অক্সিজেনের নিয়ন্ত্রণ ও রক্ষা করা দরকার। মানুষ ও অন্যান্য প্রাণী কার্বন ভাই-অক্সাইড (CO₂) ত্যাগ করে এবং গাছপালা তা গ্রহণ করে। অন্যানিকে গাছপালা যা ত্যাগ করে মানুষ ও অন্যান্য প্রাণী তা গ্রহণ করে। এভাবে পরিবেশের একটা ভারসাম্য বজায় পাকার কথা।

ক্লোরোফ্লোরো কার্বন ও পরিবেশ বান্ধব হিমায়ক

ক্লোৱোফ্লোকোৰ্বন ও পরিবেশ বান্ধব হিমায়ক

কিন্তু বর্তমানে শিল্পকারখানা, থার্মান্স পাওয়ার স্টেশন, গাড়ির ধোঁয়ায় CO_2 এর উৎপাদন বাড়ছে কিন্তু অন্যদিকে ব্যাপকহারে গাছপালা নিধনের ফলে অক্সিজেনের উৎপাদন কমছে। যার জন্য CO_2 এবং O_2 এর ভারসাম্যতা থাকছে না। উৎপাদিত CO_2 এর পরিমাপ অধিক বেশি কিন্তু গ্রহণের মাধ্যম কম থাকার কারণে উবৃত্ব CO_2 উর্ধ্বাকাশের ওজােন স্তর O_3 এর ক্ষতিসাধন করে। ওজন স্তর সূর্যের অতিবেগুনি রিশাু (Ultraviolet ray) প্রতিহত করে। ওজােন স্তর কার্বন ডাই-অক্সাইডের উপস্থিতির কারণে পাতলা এবং ফুটা হয়। ভূ-স্তরে অধিক সৌর রঞ্জনরিশাু বা বেগুনি রিশার পতিত হয়, ফলে পৃথিবীর তাপমাত্রা প্রতি বছরই কিছুটা বৃদ্ধি পায়। তাপমাত্রা বৃদ্ধির দক্ষন সবুজ পৃথিবীর ক্ষতি সাধিত হয়। ফলে ওজােন স্তরের আরও অধিক ক্ষতিসাধন করে। বায়ুতে অধিক হারে কার্বন ডাই-অক্সাইড ছাড়া এবং অধিকহারে গাছপালা নিধন করায় পরিবেশের উপর যে প্রভাব পড়ে তাকেই গ্রীনহাউজ প্রতিক্রিয়া বা Green house effect বলে।

পৃথিবীর ভাগমাত্রা বৃদ্ধি (Globul warming) ই শিল্পকারখানা ও মটরযান থেকে যে পরিমাণ কালো খোঁয়া CO₂ বের হয় তা সম্পূর্ণরূপে গাছপালা দ্বারা অক্সিজেনে পরিণত হতে পারে না। কারণ ব্যাপকহারে গাছপালা নিধন। যার ফলে বায়ুমগুলে অধিক পরিমাণ CO₂ বিরাজ করে। এ অতিরিক্ত CO₂ বায়ুমগুলের নির্দিষ্ট উচ্চতা পর্যন্ত একটি আবরণ হিসেবে থাকে, যা ভূপৃষ্ঠে প্রতিস্ত স্থালোকে ফিরে যেতে বাধা দেয়। ফলে পৃথিবীর তাপমাত্রা বৃদ্ধি পায়। আবার ওজান স্তরে CO₂ এর উপস্থিতির কারণে এটি পাতলা ও ছিন্তু হয়। যার ফলে সূর্য থেকে বেশি পরিমাণ বেগুনি রশ্বি পৃথিবীতে প্রবেশ করার্য় বায়ুমগুলের তাপমাত্রা প্রতি বছরেই কিছুটা বৃদ্ধি পায়।

৭.৬ CFCs এর সাথে ওজোন (O₃) এর রাসায়নিক বিক্রিয়া (Mention the chemical reaction of CFC with ozone) ?

CFC ওজোন ন্তরের সাথে কীভাবে বিক্রিয়া করে তা নিমে দেখনো হল-

শাভাবিক বিক্রিয়া

ক্লোরিন বিক্রিয়া

(Normal reaction)

(Chlorine reaction)

 $O_3 + UV$ rediation = $O_2 + O$

 $O_3 + CI = O_2 + CIO$

 $O_2 + O = O_3$

 $ClO + O = Cl + O_2$

uet resulting

 $O_3 + O = 2O_2$

৭.৭ CFC হিমায়ক ও নন CFC হিমায়কের ODP, GWP এর পরিমাণ এবং বায়ুমন্তলে হিমায়কের অন্তিত্বের সময়ের তুলনা (Compare commonly used CFC refrigerants with non CFC refrigerants regarding on ODP, GWP and atmospheric life) ঃ

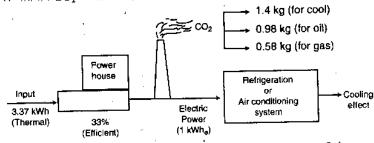
ODP (Ozone depleting substance) ওজোন স্তরের ক্ষতিকারক প্রভাবক নির্ণায়ক এবং GWP (Global warming potential) কার্বন ডাই-অক্সাইড বা গ্রীনহাউজ ইফেট্ট নির্ণায়ক। CFC হিমায়ক ও নন CFC হিমায়ক বায়ুমণ্ডলে কত সময়কাল এদের অন্তিত্ব বজায় থাকে এবং ODP ও GWP এর মাত্রা নিয়ের চার্টে দেয়া হল−

Ozone Depleting (ODP) and Global Warming (GWP) Potentials.

Chemical	Chemical formula	ODP	GDP	Estimated atmospheric life of refrigerants (years)
Chlorofluoro-carbons				
R-11	CC1₃F	1.00	1300	59
R – 12	CCl ₂ F ₂	0.95	3700	122
R - 113	CCl ₂ FCCl.F ₂	0.83	1900	98
R – 114	CCl ₂ F ₂ CClF ₂	0.71	6400	244
R – 115	CCIF ₂ CF ₃	0.36	13800	539
Hydrocholorofluoro carbons				337
F-22	CHCIF ₂	0.05	510	18
F-123	CHCl ₂ CF ₃	0.02	28	2
Hydrofluoro-carbons				
F-134a	CF ₃ CH ₂ F CF ₃ CHF ₂	0	400	18
F-152a	<u>L</u>	0	46	2.

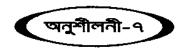
Chemical	Chemical formula	ODP	GDP	Estimated atmospheric life of refrigerants (years)
Refrigerants Mixtures	73.8% F. ₁₂			
CFC-500 CFC-502	+ 26.2% F ₋₁₅₂₉ a 51.2% F ₋₁₁₅ + 48.8% F ₋₂₂	0.74 0.22	2700 7300	
Other Refrigerants				
Water-LiBr Ammonia	7% H ₂₀ × LiBr NH ₃	0	0	-
Combustion Products Carbon-dixide	CO ₂	0	1.0	230

৭.৮ মনট্রিল প্রোটকল এবং ক্লিন এয়ার আৰ্ষ্টি (Mention the montreal protocols and the clean air acts on substance) ?


1987 সালে বিভিন্ন দেশের বিজ্ঞানী ও সরকারি প্রতিনিধি মনট্রিলে CFC ব্যবহার সম্পর্কে কিছু সিদ্ধান্ত নেন। তাতে CFC উৎপাদন হাস ও হিমায়কের অবমুক্তি নিষিদ্ধ এবং নতুন হিমায়ক উদ্ভাবনের ব্যাপারে সিদ্ধান্ত গৃহীত হয়। মনট্রিল নিষিদ্ধ এবং নতুন হিমায়ক প্রোটকল ও 1900 সালের ক্লিন এয়ার আটি (Clean air act) ২০০০ সালের মধ্যে কীভাবে বেশি ক্ষতিকারক হিমায়কগুলো উৎপাদন হাস ও ফেইজ করা হবে এবং কীভাবে উৎপাদনের উপর খাজনা বা ট্যাক্স প্রয়োগ করা হবে তা দেখানো হল-

Chlorofluorocarbon (CFC) phase out and tax Schedules

Year	Percentage of 1986 Production		U.S.Tax on CFCs
1991	100%	85%	3.015
1992	100%	80%	3.674
1993	85%	75%	5.830
1994	85%	65%	5.830
1995	50%	50%	6.820
1996	50%	40%	7.810
1997	15%	15%	8.800
1998	15%	15%	9.790
1999	15%	15%	10.780
2000	0%	0%	-


২০০০ সালের পরে বেশি ক্ষতিকারক CFC উৎপাদন বন্ধ রাখার সিদ্ধান্ত হয় কিন্তু পুরানো ইউনিটগুলো চালু রাখার সাথে হিমায়কের পুনঃ ব্যবহার বা রিইউজ (Reuse) করা হবে। বিকল ইউনিটের হিমায়ক না ছেড়ে সংগ্রহ ও সংরক্ষণ করতে হবে। পরিশোধন করে পুনরায় ব্যবহার করতে হবে। এর মধ্যে ক্ষতিকারক হিমায়কের বিকল্প তৈরি করতে হবে।

CFC সরাসরি ওজোন ন্তরের ক্ষতিসাধন করে। আবার হিমায়ন যন্ত্র চালাতে যে বিদ্যুৎ শক্তি ব্যয় হয় তা উৎপাদন করতে CO_2 তৈরি হয়। তাই হিমায়নের ব্যবহার মানে দু'ভাবে পরিবেশের ক্ষতি করা। নিম্নে চিত্র থেকে বুঝা যায় হিমায়ন যন্ত্র চালাতে 1kwhr বিদ্যুৎ উৎপাদনের জন্য কী পরিমাণ CO_2 উৎপাদিত হয়। তাই হিমায়নের ব্যবহার মানে দু'ভাবে পরিবেশের ক্ষতি করা।

চিত্র 8 ৭.১ শীতাতপ নিয়ন্ত্রণ ও হিমায়নের প্রতি কিলোওয়াট বিদ্যুৎ ব্যবহারের জন্য নির্গত CO_2

> অতি সংক্ষিম্ভ প্লব্লোচর ঃ

১। CFC की?

[বাকাশিবো-০৪, ০৭, ১২]

অথবা, CFC বলতে কী ধরনের হিমায়ককে বোঝায় লেখ।

[বাকাশিবো-২০১১, ২০১৪]

অথবা, CFC বলতে কী বুঝায় লিখ ৷

[বাকাশিবো-২০০৯, ১০ (পরি)]

অথবা, সিএফসি ক্রি হিমারক কী?

[वाकांनिरवा-२००৮, ১०]

্উত্তর 🕝 ক্লোরিন, ফ্লোরিন ও কার্বন নিয়ে গঠিত হিমায়ককে ক্লোরোফ্লোরো কার্বন হিমায়ক বা সংক্ষেপে CFC হিমায়ক বলে।

২। R-134 এর রাসারনিক সংকেত লিখ।

অথবা, হিমায়ক R-134a-এর রাসায়নিক সংকেত সেব।

[বাকাশিবো-২০১৫(পরি)]

উভৱ ট R−134 এর রাসায়নিক সংকেত CF₃CH₂F।

গ্লোবাল ওয়ার্মিং পটেনশিয়াল বলতে কী বোঝায়?

[বাকাশিবো-২০০৭, ২০১২]

অথবা, গ্লোবাল ওরার্মিং পটেনলিয়াল (GWP) বলতে কী বুঝায়?

[বাকাশিকো-২০০৩, ০৫, ০৬, ১০, ২০১২(পরি)]

অথবা, গ্লোবাল ওয়ামিং পটেনশিয়াল কী?

[বাকাশিবো-২০১১(পরি), ২০১৪]

অথবা, GWP বলতে কী বোঝায়?

[বাকাশিবো-২০১৫(পরি)]

্টিচর ট্র GWP → GWP এর পূর্ণ অর্থ Global warming potential. CFC বা অন্যান্য বস্তু যা সরাসরি ভূপৃষ্ঠের তাপমতো বৃদ্ধিও জন্য দায়ী তার প্রভাব বা মেজারমেন্ট নির্ণয় করাকে GWP বলে।

৪। হিমারক 134a এর রাসায়নিক সংকেত ও ক্ষুটনাকে লেব। অববা, হিমারক 134a এর রাসায়নিক সংকেত লেব। অথবা, হিমারক 134a এর রাসয়ানিক নাম ও সংকেত লেব।

[বাকশিবো-২৩০৩, ২০০৫, ২০০৬, ২০০৭, ২০১২]

[বাকাশিবো-২০১১, ২০১০]

[বাকাশিবো-২০০৯]

छिछ ह

হিমায়কের নামার	রাসায়নিক নাম	রাসায়নিক সংকেত	কুটনান্ধ সেঃ
134a	ট্টোফুরো ইপেন	CF₃CH₃F	- 26.2

৫। খিনহাউল ইফেকট কী?

[বাকাশিবো-২০১১]

উভক্র ত্রী বায়ুতে অধিক হারে কার্বন ডাই-অক্সাইড ছাড়া এবং অধিকহারে গাছপালা নিধন করায় পরিবেশের উপর যে প্রভাব তাকেই গ্রিনহাইজ ইচ্ছেট্ট বলে।

৬। পরিবেশ বাদ্ধব রেক্রিজারেট বলতে কী বুঝার?

[বাকাশিবো-২০০৪, ২০০৯]

ভিত্তর পৃথিবীর তাপমাত্রা বৃদ্ধির জন্য যতগুলো কারণ বা সহায়ক আছে তাদের মধ্যে একটি হল কিছু সনাতন হিমায়ক। এ সমস্ত হিমায়কের কিছু ভাল বৈশিষ্ট্য থাকা সত্ত্বেও ওজান গুরের ক্ষতি করে বলে এদেরকে পরিবেশের শত্রু গ্যাস বলে। নতুন উদ্ভাবিত কোন হিমায়কের যদি প্রচলিত হিমায়কের ভাল বৈশিষ্ট্যগুলো এবং পরিবেশের জন্য হুমকি না হয়, তাহলে সেগুলোকে পরিবেশের বন্ধু হিমায়ক বা Environmental friendly gas বলে।

৭। CO2 এবং O2 এর ভারসাম্যতা বলতে কী বুঝার?

[বাকাশিবো-২০০৭]

িউছন্ন CO_2 ও O_2 এর ভারসাম্যতা বলতে উৎপাদিত CO_2 ও O_2 -এর পরিমাণকে বুঝায়। কিন্তু বর্তমানে শিল্পকারখানা, বার্মাল পাওয়ার স্টেশন, গাড়ির ধোয়ার CO_2 এর উৎপাদন বাড়ছে। অন্যদিকে ব্যাপকভাবে গাছপালা নিধনের ফলে অক্সিজেন উৎপাদন কমছে। যার জন্য CO_2 ও O_2 এর ভারসাম্য থাকছে না।

৮। গ্রীনহাউন প্রতিক্রিয়ার ফলে পরিবেশের কী পরিবর্তন হচ্ছে?

[বাকাশিবো-২০০৪]

ভিতর ব্র গ্রীনহাউস প্রতিক্রিয়ার ফলে পরিবেশের ব্যাপক পরিবর্তন ঘটছে—

- ওজনন্তর কার্বনডাই অক্সাইড (CO₂) এর উপস্থিতির কারণে পাতলা এবং ফুটো হয়।
- ভৃস্তরে অধিক সৌর রঞ্জন রশ্মি বা বেগুনি রশ্মি পতিত হয় ফলে পৃথিবীর তাপমাত্রা বৃদ্ধি পায় ।
- তাপমাত্রা বৃদ্ধির দক্রন সবুজ পৃথিবীর ক্ষতি হয়। ফলে ওজনস্তরে আরও অধিক ক্ষতিসাধন হয়।

৯। ODS-কীয়

[বাকাশিবো-২০০৪]

তিষ্কার ODS o ODS এর পূর্ণ অর্থ Ozone depletion substance. ওজোন স্তর হ্রাস বা ক্ষয়ের জন্য যে সমস্ত রাসায়নিক বস্তুসমূহ দায়ী তাদেরকে ওজোন ক্ষয়ের উপাদান (Ozone depletion substance)।

১০। ওজোন (O₃) ডিপ্লেশন বদতে কী বোঝায়?

[বাকাশিবো-২০১২ (পরি), ২০১৫(পরি)]

 $oldsymbol{oldsymbol{eta}}$ ন্তরের ত্রা ক্ষতি সাধান হয় তাকে O_3 ডিপ্লেশন বুঝায়।

🕥 गर्शकेष्ठ श्रद्धाष्टतः :

পরিবেশ বাদ্ধব হিমায়ক বলতে কী বৃঝ?

ভিতর বিশ্ব পরিবেশের বন্ধু হিমায়ক বা Environmental friendly gas বলে।

আধুনিক হিমায়ক বলতে সাধারণত পরিবেশের জন্য ক্ষতিকারক নয় এমন নতুন উদ্ভাবিত হিমায়ককে বুঝানো হয়। CFC এবং HCFC গ্রুপের হিমায়কগুলো কমবেশি গুজোন স্তরের ক্ষতি করে, তাই বিজ্ঞানীরা কিছু পুরানো হিমায়কের পরিবর্তে নতুন হিমায়ক উদ্ভাবন করেন। এগুলোকে CFC's replacement refrigerant বলা হয়। আর যদি সম্পূর্ণ নতুন হিমায়ক আবিষ্কার ও ব্যবহৃত হয়, তাহলে সেগুলোকে নতুন হিমায়ক বা নিউ রেফ্রিজারেন্ট (New refrigerant) বলে। নতুন উদ্ভাবিত Replacement refrigerant এবং নতুন রেফ্রিজারেন্টকেই আধুনিক হিমায়ক বলা যায়। যেমন R – 123 (CHCl2 CF3), R – 290, R – 134a (CF3 CH2 F), R – 600a ইত্যাদি।

২। আধুনিক হিমায়কের সুবিধাসমূহ দিখ।

[বাকাশিবো-২০০৪]

ঠছর জ সুবিধাওলো হল-

- ১। সবচেয়ে বড় সুবিধা যে, এগুলো ওজোন স্তারের ক্ষতি করে না। পরিবেশের ক্ষতি করে না বলে এগুলোকে 'পরিবেশের বন্ধু হিমায়ক' বলে।
- ২। বিস্ফোরক নয়।
- ৩। অদাহ্য।
- 8। সমপরিমাণ শক্তি ব্যয়ে অধিক কাজ করা যায়। হিমায়ক 69S হিমায়ক 502 এর তুলনায় RE বেশি WD কম সুতরাং COP বেশি।
- ৫। ODP এবং GWP কম।
- ৬। আকাশে কম সময়ের অন্তিত্ব (Less atmospheric life time)।
- ৩। চারটি পরিবেশ বান্ধব হিমায়কের বাসান্ননিক সংকেতসহ নাম निर्च।

ठेंडव ह

- \$ 1 R 123 (CH Cl₂ CF₃)
- ₹! R 134a (CF₃ CH₂ F)
- $9 + R = 600a (C_4 H_{10})$
- $8 + R 290 (C_3 H_3)$
- $@+ R = 404A \ (R = 125/R = 143a/R = 134a) \ (CHF_2 \ CF_3/CH_3 \ CF_3/CF_3 \ CH_2 \ F)$

৪। ODS ও ODP ও GWP বলতে কী বুঝা?

[বাকাশিবো-২০০৪, ২০১৪]

৫। CFC এর সাথে ওজোন এর বিক্রিয়াটি দিব।

্ঠিতর ই) CFC ওজন স্তরের সাথে কীভাবে বিক্রিয়া করে তা নিম্নে দেখনো হল−

সাভাবিক বিক্রিয়া

ক্রোরিন বিক্রিয়া

(Normal reaction)

(Chlorine reaction)

 O_3 + UV rediation = O_2 + O

 $O_3 + Cl = O_2 + ClO$

 $O_2 + O = O_3$

 $ClO + O = Cl + O_2$

uet resulting

 $O_3 + O = 2O_2$

৬। থীনহাইজ ইফেষ্ট কমানোর উপায় বর্ণনা কর।

[বাকাশিবো-২০০৭,২০১২, ২০১৪]

😎 র 🔊 গ্রীনহাউজ ইফেক্ট কমানোর উপায় নিমুরূপ ঃ

- ১। জ্বালানি শক্তি সংরক্ষণের মাধ্যমে বায়ুমণ্ডলে কার্বন ডাই-অক্সাইড গ্যাসের উত্তোরন্তর পরিমাণ বৃদ্ধি ও হাস করা।
- জমিতে রাসায়নিক সারের ব্যবহার কমিয়ে জৈবসারের ব্যবহারের প্রচলন করা।
- কৃষি জমিতে পোকামাকড় মারার জন্য কীটনাশক ব্যবহার না করে যান্ত্রিক উপায়ে পোকামাকড় নিধন করা।
- 8। কিলোমিটার প্রতি বর্তমানের চেয়ে অনেক কম জ্বালানি তেলের প্রয়োজন হয় এমন মোটর্যান ইঞ্জিন উদ্ভাবন করা।
- ৫ ৷ কার্বন ডাই-অক্সাইড উৎপাদনকারী জীবাশা জ্বালানি ব্যবহার যথাসম্ভব কম করা এবং তার বিকল্প আবিদ্ধার ও ব্যবহার করা ৷

৭। থীনহাইস প্রতিক্রিয়া ব্যক্ত কর।

[বাকাশিবো-২০১২ (পরি)]

অথবা, গ্ৰীনহাউজ ইফেট কী?

উত্তর ব্রীনহাউজ প্রতিক্রিয়া (Green house effect) ঃ পৃথিবীর বুকে গাছপালা, লতা ও ঘাস ইত্যাদি কারণে দেখতে অনেকটা সবুজ মনে হয়। এজন্য পৃথিবীকে গ্রীনহাউজ বলে। মানুষ তার চারপাশে প্রাকৃতিক যা কিছু পায় তার সবই পৃথিবীর ভারসাম্যতা রক্ষা করার জন্য। ভারসাম্যতা রক্ষা করার জন্য পৃথিবীর তাপমাত্রা ও অক্সিজেনের নিয়ন্ত্রণ ও রক্ষা করা দরকার। মানুষ ও অন্যান্য প্রাণী কার্বন ডাই-অক্সাইড (CO₂) ত্যাগ করে এবং গাছপালা তা গ্রহণ করে। অন্যদিকে গাছপালা যা ত্যাগ করে মানুষ ও অন্যান্য প্রাণী তা গ্রহণ করে। এভাবে পরিবেশের একটা ভারসাম্য বজায় থাকার কথা।

प्रतित्व वक् दिमाয়क्त की की क्याविम बाका প্রয়োজন লেব।

[বাকাশিবো-২০০৩, ২০১১]

(ទីខព្

- এগুলো ওজন ন্তরের ক্ষতি করবে না :
- বিক্ফোরক নয়।
- अनाद्य ।
- সমপরিমান শক্তি ব্যায়ে অধিক কাজ করা যায় ;
- ODP এবং GWP কম।
- আকাশে কম সময়ের অস্তিত্
 ।

ক্লোৱোক্লোকাৰ্শ ও পৱিবেশ বান্ধব হিমায়ক

৯। CFC হিমায়ক কীভাবে পরিবেশের ক্ষতি করে।

[বাকাশিবো-২০০৩, ২০০৫,২০০৬, ২০০৭, ২০১১ (পরি)]

অথবা, সিএফসি হিমায়ক কীভাবে পরিবেশকে ক্ষতি করে, শেখ।

[বাকাশিবো-২০১৫(পরি)]

উছর ট CFC সরাসরি ওজোন তরের ক্ষতিসাধন করে। আবার হিমায়ন যন্ত্র চালাতে যে বিদ্যুৎ শক্তি ব্যয় হয় তা উৎপাদন করেত CO2 তৈরি হয়। তাই হিমায়নের ব্যবহার মানে দু'ভাবে পরিবেশের ক্ষতি করা। নিম্নে চিত্র থেকে বুঝা যায় হিমায়ন যন্ত্র চালাতে 1kwhr বিদ্যুৎ উৎপাদনের জন্য কী পরিমাণ CO2 উৎপাদিত হয়। তাই হিমায়নের ব্যবহার মানে দু'ভাবে পরিবেশের ক্ষতি করা।

১০। ODP এবং GWP এর মধ্যে ২টি পার্থক্য निष ।

[বাকাশিবো-২০০৪

		. 17
Į O	ខព	
_		-

GWP
১। GWP এর পূর্ণ অর্থ Global Warming Potential.
২। সরাসরি ভু-পৃষ্ঠের তাপমাত্রা বৃদ্ধির জন্য দায়ী তার
প্রভাব বা মেজারমেন্ট নির্ণয় করাকে GWP বলে।

> রচনামূলক প্রশ্লাবনি ঃ

১। গ্রীনহাউজ ইফেট বলতে কী বৃঝ বর্ণনা কর।

ঠিচর সহকেত 🛮 অনুচেছদ ৭.৫ নং দ্রষ্টব্য।

২। মন্ত্রিল প্রোটকল বর্ণনা কর।

উচন সমকেত হ অনুচেছন ৭.৬ নং <u>দ</u>ষ্টব্য।

ধজোন স্তরের ক্ষতিকারক এর উপর মনট্রিল প্রোটকন (Montreal Protocols) এবং ক্রিন এয়ার আষ্ট্র (Clean are ac বাকানিবো-২০০

উচন্ন সংক্ষেত চুঅনুচেছদ ৭.৪ নং দুটব্য।

8। প্রতি হিমায়কের নাম এবং রাসায়নিক সংকেতসমূহ চার্টের মাধ্যমে প্রকাশ কর।

উচর সহকেত 🚱 অনুচেছদ ৭,৭ নং দ্রষ্টব্য।

পরিবেশ বাছব আধুনিক হিমায়ক বলতে কি সুঝ বিস্তারিতভাবে উল্লেখ কর।

উচন সংক্রেত ছ অনুচেছদ ৭.২ নং দুষ্টব্য।

৬। ০৫টি পরিবেশ বাদ্ধব আধুনিক হিমারকের নাম সংকেতসহ উল্লেখ কর।

উচর সমকেত 🕫) অনুচ্ছেদ ৭.৩ নং দ্রষ্টব্য।

৭। ODS, ODP, GWP, CFC এবং HFC, HCFC বদতে কী বুৰায়।

উচর সমকেত ও অনুচেছদ ৭.৪ নং দ্রষ্টব্য।

৮। প্রজ্ঞান স্তর ক্ষয়, গ্রীনহাউজ ইফের এবং গ্রোবাল ওয়ার্মিং বলতে কী বুকঃ

ঠচর সহকেত 🕙 অনুচেহদ ৭.৫ নং দ্রউব্য।

৯। প্রজ্ঞোন স্বরের সাথে ক্লোরিনের রাসারনিক বিক্রিরা সমীকরণসহ উল্লেখ করে পেখাও।

উচন্ন সংক্রেন্ত 🚱 অনুচেছদ ৭.৬ নং দ্রষ্টব্য।

=== ক্লোক্লোকো কার্বন ও পরিবেশ বান্ধব হিমায়ক

ক্রোফোরো কার্বন

রেফ্রিজারেণ্ট অয়েল∕কশেপ্রসর অয়েল (Refrigerant Oil Compressor Oil)

৮.০ ভূমিকা (Introduction) 8

হৈছিল বৈষ্ট ক্রয়েল বা কম্প্রেসর অয়েল মূলত একই জিনিস। অয়েল (Oil) সাধারণত কোন ঘূর্ণায়মান অংশসমূহকে পিছিলে ও নিরাপনে চলতে সাহায্যে করে। অনেকক্ষেত্রে অয়েল পরিষ্কারক ও কুলিং এজেন্ট হিসেবে কাজ করে থাকে। রেফ্রিজারেশন সিস্টেমে সাধারণত নৃত্য ক্রেনে ব্যবহৃত হয়, যেমন— মিনারেল অয়েল এবং সিনথেটিক অয়েল। মিনারেল অয়েল কুড অয়েল হতে পরিকেন্দির ক্রেন্স সিনথেটিক অয়েল প্রাকৃতিক গ্যাস হতে পরিকোধিত।

দিত টাইপ হারমেটিক কম্প্রেসর মোটর জ্বলে প্রচুর পরিমাণে হাইড্রোক্লোরিক অ্যাসিড (HCI) উৎপন্ন হয় ফলে তেলের গুণাগুণ নষ্ট হয় ্রলের মধ্যে অসম্পৃক্ত হাইড্রোকার্বন যত কম থাকে তেলের রাসায়নিক দৃঢ়তা তত বেড়ে যায়। ভাল তেল খুব হালকা নেখাত অনেকটা পরিষ্কার পানির মত। আলোচ্য অধ্যায়ে রেফ্রিজারেন্ট তেলের গুরুত্ব, প্রকারডেন, গুণাবলি, স্পেসিফিকেশন, আছেলের নাম এবং সিন্থেটিক অয়েল স্থানান্তর এবং সংরক্ষণ করার জন্য নিরাপন্তা বিধান সম্পর্কে বিস্তারিত জানা যাবে।

৮.১ রেফ্রিজারেন্ট অয়েশের শুরুত্ব (Outline the importance of refrigerant oil) 8

রেফ্রিজারেন্ট অয়েলের প্রয়োজনীয়তা অপরিসীম। অয়েল ছাড়া কোনডাবেই কম্প্রেসর চালানো উচিত নয়। অয়েল কম্প্রেসরের দুর্গায়মান অংশকে ক্ষয়ের হাত থেকে রক্ষা করে। সহজে যুরতে সহায়তা এবং ঘূর্ণনজনিত ঘর্ষণক্রাস করে।

বড় বড় কম্প্রেসর চালু করার পূর্বেই তেলের প্রতি গুরুত্ব দেয়া হয়। নির্মাতা কর্তৃক ব্যবস্থা ও নিয়ম মেনেই কম্প্রেসর চালু করা ঠিচ হয়, যাতে কোন দুর্ঘটনা ঘটতে না পারে। তাই চালু অবস্থায় তেলজনিত কারণে যাতে দুর্ঘটনা না ঘটে সেজন্য অয়েল প্রেসার গ্রুত্ব কাটআউট, অয়েল লেভেল কাটআউট, অয়েল পাম্প ফেইলুর কাটআউট এবং অয়েল টেম্পারেচার কাটআউট থাকে। কিন্তু এত কিছু ঠিনিরাপন্তামূলক ব্যবস্থা নেয়ার পরও যদি সঠিক তেল নির্বাচন না করা হয়, তাহলে কম্প্রেসর নির্দিষ্ট সময়ের পূর্বেই ধারাপ হয়ে যাবে। তিত্ব সকল নিরাপন্তা ব্যবস্থা ঠিক রেখে নির্মাতা কর্তৃক নির্দেশিত, অনুমোদিত ও পরিমাণ তেল ব্যবহার করেই কম্প্রেসর চালানো যাবে।

নিয়ে রেফ্রিজারেন্ট অয়েলের গুরুত্ব দেয়া হল-

- ১। ক্ষয় কমানোর জন্য,
- ২ ৷ পতিশীল অংশসমূহ দুব্রিকেটিং করার জন্য,
- ৩। তাপ কমানের জন্য,
- ৪। ছোট আকৃতির লিকেজ রোধ করার জন্য,
- মৃতিং অংশের ধারা রোধ করার জন্য,
- ৬। মরিচারোধ করে।
- ৭। মৃতিং অংশসমূহ পরিকার রাখে।

৮.২ রেফ্রিজারেন্ট অয়েলের প্রকারভেদ (Classification of refrigerant oil) 8

রেফ্রিজারেশন কম্প্রেসরে ব্যবহৃত অয়েল প্রধানত দৃ'ভাগে ভাগ করা হয়েছে—

- ১। মিনারেল অয়েল (Mineral oils)।
- ২। সিন্থেটিক অয়েল (Synthetic oils) !

ক্রড অয়েলকে পরিশোধিত করে মিনারেল অয়েল পাওয়া যায় এবং লুব্রিকেশনের জন্য প্যারাফিনিক (Paraffinic) অথবা ন্যাপথেনিক (Naphthenic) বেস ব্যবহার করা হয়।

विकलातने जासन/करन्थमत पराम

মিনারেল অয়েলকে আবার দু'ভাগে ভাগ করা হয়েছে-

- ১। প্যারাফিন বেস (Paraffin base)।
- ২। ন্যাপথেনিক বেস (Naphthenic base)।

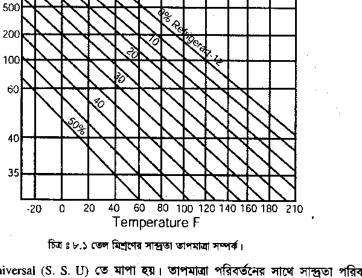
প্রাকৃতিক গ্যাসকে (Natural gas) পরিশোধিত করে সিনথেটিক অয়েল পাওয়া যায়। সিনথেটিক অয়েলকে আবার দু'ভাগে ভাগ করা হয়েছে—

- 🕽 । Dialkylated Benzine / পলিস্টার (Polyolester) ।
- ২। পশিইথিশিন গ্লাইক.(Polyethylene glycol)।

৮.৩ একটি ভাল রেফ্রিজারেন্ট অয়েলের শুণাবলি (Mentions the properties of a good refrigerant oil) 8

নিয়ে Refrigerant oil এর গুণাবলি দেয়া হল–

- ১। রাসায়নিক পৃঢ়তা (Chemical stability)।
- ২। সান্ত্রতা (Viscosity)।
- ত। প্রবহমানতা (Pour point)।
- 8। ক্লাউড পয়েন্ট (Cloud point)।
- t ৷ ফ্লক পয়েন্ট (Floc point)
- ৬। বিদ্যুতের প্রবাহে প্রতিরোধ ক্ষমতা (Dielectric strength)।
- ৭। হাই প্লাস পয়েনট,
- ৮। নন-অক্সিডাইজেশন
- ৯। ভাল তাপীয় স্থায়িত্বতা
- ১০। সর্বনিমু পরিমাণ আর্দ্রতা ধারণ ইজ্যানি।


৮.৪ রেফ্রিজারেন্ট অয়েলের শুণাবলির বর্ণনা (Explain the properties of refrigerant oil) ঃ

১। রাসায়নিক দৃঢ়তা (Chemical stabitity) ঃ তেলের রাসায়নিক দৃঢ়তা বলতে কোন তেলের দীর্ঘদিন অনবরত পিছিলকরণসহ প্রচণ্ড গরমেও তার গুণাগুণের পরিবর্তন না হওয়াকে বুঝানো হয়। হারমেটিক্যালী সিলড্ কম্প্রেসর চলাকালীন তার অভ্যন্তরের তাপমাত্রা প্রচণ্ড বৃদ্ধি পায় (আমেরিকায় টেকুমশাহ উইন্ডো এয়ারকন্তিশানারের কম্প্রেসর গায়ে লেখা থাকে—"কম্প্রেসর হাউজিং" (Compressor housing) তাপমাত্রা 302° ফাঃ বা 165° সেঃ পর্যন্ত বৃদ্ধি পেতে পারে) তাহলে দেখা যায় যে, প্রচণ্ড গরমে কম্প্রেসর অয়েলের অন্তিত্ব বজায় থাকে। তেল তার কাজ দীর্ঘদিন দক্ষতার সাথে করে যায়। অন্যদিকে ইভাপোরেটরে প্রচণ্ড গায়মেও সে তার কার্য ক্ষমতা হারায় না। আবদ্ধ কম্প্রেসর মোটর খারাপ হওয়ার পূর্ব মুহুর্তেও তেলের গুণাগুণ ভাল থাকতে হয়। একটি হারমেটিক মোটর কয়েক দশক/বছর পর্যন্ত কাজ করতে পারে। কিছু মোটরের তারের ইনস্লেশন (Insulation) জ্বলে প্রচুর হাইড্রোক্রারিক অ্যাসিড তৈরি হয়, ফলে তেলের গুণাগুণ নষ্ট হয়। দীর্ঘদিন দক্ষতার সাথে কাজ করার জন্য একটি উন্নত তেলে অসম্পৃক্ত হাইড্রোকার্বনের হার সবচেয়ে গুরুত্বপূর্ণ। অসম্পৃক্ত হাইড্রোকার্বন যত কম থাকে তেলের রাসায়নিক দৃঢ়তা তত বৃদ্ধি পায়। ভাল তেল খুব হালকা দেখতে অনেকটা পরিকার পানির মত।

২। সান্দ্রতা (Viscosity) ই 60 ঘন সেন্টিমিটার তেল একটি সরু অরিফিসের মাধ্যমে প্রবাহ করতে যে কয়েক সেকেন্ড সময় লাগে তাকে সে তেলের সান্দ্রতা নম্বর বা ভিসকোসিটি নম্বর বলে। এটা সেবোল্ট ভিসকোমিটারের (Saybolt Viscosimeter) অরিফিসের মাধ্যমে 100° ফাঃ বা 380° সেঃ তাপমাত্রায় তেল প্রবাহের সময় নির্ণয় করা হয়। তেল কড ঘন বা পাতলা তা সান্দ্রতা নম্বরের সাহায্যে বোঝা যায়। তেল বেশি পাতলা বা ভিসকোসিটি বেশি হলে ঘূর্ণায়মান অংশগুলোর মাঝে জায়গা দখল করবে না সূতরাং মাঝামাঝি সান্দ্রতা অনেক কম্প্রেসরের জন্য উপযোগী হতে পারে। তাপমাত্রার পরিবর্তন হলে সান্দ্রতার পরিবর্তন ঘটে।

দ্র্ণায়মান অংশগুলো পিচ্ছিল করা ছাড়াও পিস্টন সিলিভারের মাঝে প্রতিবন্ধকতা বা সিল,তৈরি করে। ফলে তেল উচ্চ চাপ ও নিমু চাপের মাঝে কৃত্রিম দেয়াল সৃষ্টি করে। সান্দ্রতা কম হলে প্রতিবন্ধকতা সৃষ্টি করতে পারে না। আবার সান্দ্রতা বেশি হলে ঘর্ষণ বেশি হয়, ফলে কম্প্রেসর চালাতে অধিক শক্তি ব্যয় হয়।

জারেন্ট অয়েন/কশ্রেসর অয়েল

Temperature (°C)

20 30 40 50 60 70 80 90

সাম্ব্রতা Saybolt Second Universal (S. S. U) তে মাপা হয়। তাপমাত্রা পরিবর্তনের সাথে সান্দ্রতা পরিবর্তন ৮.১ চিত্রে দেখানো হল।

- ৩। প্রবহমানতা (Pour Point) ঃ আমরা জানি, তাপমাত্রা বাড়লে তেল (Oil) পাতলা হয় এবং তাপমাত্রা কমলে ঘন হয়, তাপমাত্রা আরও কমালে কোন এক তেল আর প্রবাহী থাকবে না। তাহলে সর্বনিম যে তাপমাত্রায় পর্যন্ত কোন তেল প্রবাহ করে তাকে সে তেলের প্রবহমানতা বা পোর পয়েন্ট বলে। নিম তাপমাত্রায় ব্যবহৃত হিমায়নের কন্প্রেসরের জন্য তেল নির্বাচনে প্রবহমানতা বিবেচনায় রাখতে হয়। ত্রাছ কেইস ও ইভাপারেটরে তেল ঠাগু হলে যাতে প্রবাহ বদ্ধ না হয় সেজন্য প্রবহমানতার গুরুত্ব দেয়া হয়। ইভাপারেটরে তেল ঘন হয়ে দেয়ালে লেগে থাকলে তা হিট ইনসুলেশন হিসেবে কাজ করে। তাই প্রবহ্মানতা বা পোর পয়েন্ট ইভাপোরেটরের তাপমাত্রা থেকে অনেক নিচে থাকা উচিত।
- 8। ফ্লাউড পরেন্ট (Cloud Point) ই তেলের মধ্যে কমবেশি মোমজাতীয় শ্বেত পদার্থ থাকে। তেল ঠাণ্ডা করলে এগুলো কোন এক সময় তলানিতে পরিণত হতে গুরু করে। সর্বনিমু যে তাপমাত্রায় তেলে অবস্থিত মোমজাতীয় পদার্থ তলানিতে পরিণত হতে গুরু করে, তাকে ক্লাউড পয়েন্ট বলে। ঠাণ্ডার কারণে তলানি আকারে জমতে থাকলে ইভাপোরেটরের কার্যক্ষমতা হ্রাস পায় এবং এক সময় কন্দেপ্রসরে প্রয়োজনীয় তেলের অভাব দেখা যায়। সেজন্য তেল নির্বাচনে ক্লাউড পয়েন্ট একটি গুরুত্বপূর্ণ বিষয়।
- ৫। ফ্রক পয়েন্ট (Floc Point) য় হিমায়ন চক্রে তেল ও হিমায়ক একরে মিশে যায়। আয়তন অনুপাতে 90 শতাংশ হিমায়ক ও 10 শতাংশ তেলের মিশ্রণে অবস্থিত মোমজাতীয় পদার্থ সর্বনিমু যে তাপমায়ায় তলানি আকারে পায়ের তলায় জমা হতে শুরু করে তাকে ফ্রক পয়েন্ট বলে। তেল উৎপাদনকারী প্রতিষ্ঠানকে এ ধরনের পরীক্ষা করার দরকার হয়। বাস্তবে হিমায়ন চক্রে গ্য়াস ও তেলের মিশ্রণ প্রভাবিত হলে ইভাপোরেটরের কার্যক্ষমতা হাস পায়। তেল নির্বাচনে ফ্রক পয়েন্ট য়পের্ট গুরুত্ব বহন করে। তেলের সাথে মিশে এমন হিমায়কের ক্ষেত্রে ক্লাউড পয়েন্ট ও পোর পয়েন্টের চেয়ে অধিক গুরুত্বপূর্ণ হল ফ্রক পয়েন্ট। হিমায়কের সাথে তেলের উপস্থিতি যত বাড়ে মোমজাতীয় পদার্থ তত পৃথক হওয়ার সন্তাবনা বাড়ে। সূতরাং তেল-গ্যাস মিশ্রণের বেলায় (--18°) সেঃ নিচের তাপমায়ায় ব্যবহার করলে ফ্লক পয়েন্টের গুরুত্ব বেলি। তবে যে সব গ্যাস তেলের সাথে মিশে না সে ক্ষেত্রে ফ্লক পয়েন্টের কোন গুরুত্ব নেই।

(চ) বিদ্যুতের প্রবাহে প্রতিরোধ ক্ষমতা (Dielectric strength) \$

Viscosity, Saybolt Seconds Universal

তেলে কী পরিমাণ অপদ্রব্য আছে তার পরিমাপ হল বিদ্যুৎ প্রবাহে প্রতিরোধ ক্ষমতা। হারমেটিক ও সেমিহারমেটিক কম্প্রেসর মোটেরের বেলায় তেলে বিদ্যুৎ প্রবাহে প্রতিরোধ করার ক্ষমতা প্রশ্ন জড়িত হয়। এ ক্ষমতার মাধ্যমে যাচাই করা হয় তেলের মধ্যে পানি, ময়লা এবং অন্যান্য অপদ্রব্যের পরিমাণ।

<u>রফ্রিজারেন্ট অয়েল/কশ্পেসর অয়েল</u>

৮.৫ রেফ্রিজারেশন অয়েলের স্পেসিফিকেশন (Specification of refrigeration oil) ঃ

Property of oil	Reciprocating compressors	Centrifugal compressors
Viscosity		
At 40°C	(150 ± 10) \$SU	$.(300 \pm 25)$ SSU
At 100°C	40 to 45 SSU	50 to 55 SSU
Dielectric strength (min)	25 KV	25 KV
Pour point (max)	-46°C	-6.5°C
Flash point (min)	160° C	200°C
Neutralization number (max)	0.05	0.1
Floc point (max)	-55°C	_

৮.৬ রেফ্রিজারেশন ক্ষেত্রে ন্যাপথেন বেস অয়েল বেশি ব্যবহার করা হয় কেন (Explain the causes of more use of napthene base oils for refrigeration purpose) 8

ন্যাপথেন বেস অয়েল রেফ্রিজারেন্টের সাথে সহজে মিশে যায় রেফ্রিজারেন্টের সাথে কোন বিক্রিয়া করে না। এটা কভেদারে হাইপ্রেসার এবং হাই টেম্পারেচার আবার লো সাইডে ইভাপোরেটরে নিমু তাপমাত্রায় এ তেলের বৈশিষ্ট্যের কোন পরিবর্তন হয় না। সহজে কম্প্রেসরে ফিরে আসে। তাই রেফ্রিজারেশনের ক্ষেত্রে ন্যাপথেন বেস অয়েল বেশি ব্যবহৃত হয়।

৮.৭ তেলের বাড়তি উপদানগুলো ব্যাখ্যা কর (Explain the contains additives of oil) ?

লুব্রিকেটর তেল এর ধাতুর এর সাথে আসক্ত হওয়ার এক ধরনের প্রবনতা আছে, যা টিউব এর কয়েলকে দৃষিত করে। ইহাকে ওয়েল ফাউলি ও (Oil Fouling) বলে। ইহা টিউবের উপরে এক ধরনের আস্তরণ তৈরি করে যা হিট ট্রান্সফারে প্রতিবন্ধকতা তৈরি করে এবং, টিউবের লাইফটাইম কমাই এসকল সমস্যা কমানোর জন্য ওয়েল অ্যাডিটিভস ব্যবহার করা হয়। নিম্নে কয়েকটি আডিটিডস এর নাম লিখা হল~

PROA-Polarized Refrigerent oil Additives.

SRA-Sythetic Refrigerent Additives.

NMR-Nucleo Molecullor Regenarative.

PROA এবং SRA বাড়তি উপাদান হিসাবে হিমায়ক তেলের সাথে মিশ্রিত করা হয়, বাড়তি উপদানগুলো তেলের থেকে বেশি ওজন থাকার কারণে তেল এবং পৃষ্ঠের মাঝে অবস্থান করে এবং ইউনিট এর কর্মক্ষমতা উনুয়নে অস্থায়ীভাবে কাজ করে।

৮.৮ HFC রেফ্রিজারেন্টে ব্যবহৃত বিভিন্ন অয়েলের নাম (Name the different oils used with HFC refrigerants) 8

- ১। Polyolester (রেফ্রিজারেন্ট প্ল্যান্টের জন্য)
- ২। Polyethylene (কার এয়ারকডিশনিং এর জন্য)

৮.৯ HFC হিমায়কের সাথে ব্যবহৃত বিভিন্ন তেল এর নাম (Name the different oil used with the HFC Refrigerent) 8

Refrigeration oils 8

rest Berman one v	•	
হিমায়ন তেল (Refrigeration oils)	HFC সাথে মিশ্রণের অবস্থা (Miscibility	ব্যবহার (Application)
	with HFC)	·
খনিজ তেল (Mineral Oil)	নিমু মিশ্রনীয় (Low Mixible)	HFC হিমায়নের সাথে ব্যবহার করা হয়।
Ester তেল (Ester oil)	भिन्ननीम् (Miscible)	HFC হিমায়নের সাথে ব্যবহার করা হয়।
Ether তেল (Ether oil)	মিশ্রনী (Miscible)	
অ্যালকাইল বেনজিন	নিমু মিশ্রণীয় (Low Mixible)	HFC সাথে আংশিক ভাবে ব্যবহার করা হয়।

ফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

<u>রেফিজারেন্ট অয়েল/কশেপ্রসর অয়েন্ড</u>

HFC রেট্রিজারেউ এর সাথে ব্যসহারের বৈশিষ্ট (Mention the Features of synthetic oil used in HFC Refrigeration) ঃ

- → সিন্থেটিক রেফ্রিজারেশন তেল প্রচলিত হিমায়নের সাথে পুরাতন (Older)
- → অধিক তাপমাত্রায় স্থায়ি।
- → চমৎকার আমানত (deposite) নিয়ন্ত্রণ।

৮.১০ সিনখেটিক অয়েশ স্থানান্তর এবং সংরক্ষণ করার জন্য নিরাপত্তা বিধান (Mention the Precution & safety Mesure in handling & staring of synthetic oil) ঃ

- ১ : সিনথেটিক অয়েলের দ্রাম, ক্যান বা কৌটা খুলে বেশি সময় বাতাসের সংস্পর্শে রাখা যাবে না । কারণ এটা বাতাস থেকে জলীয়বাষ্প গ্রহণ করে । জলীয়বাষ্প গ্রহণ করদে এর গুণাগুণ বা বৈশিষ্ট্য নষ্ট হয়ে যায় । ফলে ব্যবহারের অনুপ্রোগী হয়ে যায় ।
- ২। সিস্টেমে অয়েল চার্জ করার সময় হতে হ্যান্ড গ্লোভস ব্যবহার করতে হবে, যাতে হাতে তেল স্পর্শ না করে। হাতে লাগলে হাত পুড়ে যেতে পারে। তাই ব্যবহারের সময় সাবধান থাকতে হবে, যাতে শরীরের কোন জায়গায় এ তেল যেন স্পর্শ না করে।
- ৩। প্রাস্টিকের পাত্রে তেল পরিবহন করা উচিত নয়।

> অতি সংক্ষিম্ভ প্রস্লোহর ঃ

১। সাম্ৰুতাকী?

ভিতর । 60 ঘন সেন্টিমিটার তেল একটি সরু অরিফিসের মাধ্যমে প্রবাহ করতে যে কয়েক সেকেন্ড সময় লাগে তাকে সে তেলের সান্দ্রতা নম্বর বা ভিসকোসিটি নম্বর বলে। এটা সেবোন্ট ভিসকোমিটারের (Saybolt Viscometer) অরিফিসের মাধ্যমে 100° ফাঃ বা 380° সেঃ তাপমাত্রায় তেল প্রবাহের সময় নির্ণয় করা হয়।

২। বিদ্যুৎ প্রবাহে প্রতিরোধ ক্ষমতা বলতে কী বুঝান হয়?

্ঠিতর ট্রি তেলে কী পরিমাণ অপদ্রব্য আছে তার পরিমাপ হল বিদ্যুৎ প্রবাহে প্রতিরোধ ক্ষমতা। হারমেটিক ও সেমিহারমেটিক কম্প্রেসর মোটরের বেলায় তেলে বিদ্যুৎ প্রবাহে প্রতিরোধ করার ক্ষমতা প্রশ্ন জড়িত হয়। এ ক্ষমতার মাধ্যমে যাচাই করা হয় তেলের মধ্যে পানি, ময়লা এবং অন্যান্য অপদ্রব্যের পরিমাণ।

৩। দৃটি কম্প্রেসার অয়েলের নাম লিব।

উত্তর 🗗 দ্টি কম্প্রেসার অয়েদের নাম-

- ১। Polyolester (রেফ্রিজারেন্ট প্ল্যান্টের জন্য)।
- 🔾 । Polyethylene (কার এয়ারকভিশনিং এর জন্য)।
- ৪। বিদ্যুৎ প্রবাহে প্রতিরোধী ক্ষমতার সাহাব্যে তেলের কোন অবস্থা জানা যায়?

ঠিছর ত তেলে কী পরিমাণ অপদ্রব্য আছে তার পরিমাপ হল বিদ্যুৎ প্রবাহে প্রতিরোধ ক্ষমতা। হারমেটিক ও সেমিহারমেটিক কম্প্রেসর মোটরের বেলায় তৈলে বিদ্যুৎ প্রবাহে প্রতিরোধ করার ক্ষমতা প্রশ্ন জড়িত হয়। এ ক্ষমতার মাধ্যমে যাচাই করা হয় তেলের মধ্যে পানি, ময়লা এবং অন্যান্য অপদ্রব্যের পরিমাণ।

ে। ফ্রক পয়েন্ট কী?

[বাকাশিবো-২০০৪, ২০০৮, ২০০৯]

্ঠিছর ট্রি হিমায়ন চক্রে তেল ও হিমায়ক একত্রে মিশে যায়। আয়তন অনুপাতে 90 শতাংশ হিমায়ক ও 10 শতাংশ তেলের মিশ্রণে অবস্থিত মোমজাতীয় পদার্থ সর্বনিমু যে তাপমাত্রায় তলানি আকারে পাত্রের তলায় জমা হতে শুরু করে তাকে ফুক পয়েন্ট বলে।

অ্যাডভাপড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং-১৭

রেফ্রিজারেন্ট অয়েল/কশ্রেসর অয়েল

61 তেল নির্বাচনে প্রবহমানতার ভক্তত্ব লিব।

[বাকাশিবো-২০১০ (পরি)]

[ঠছক 🖥] আমরা জানি, তাপমাত্রা বাড়লে তেল পাতলা হয় এবং তাপমাত্রা কমলে ঘন হয়, তাপমাত্রা আরও কমালে কোন এক তেল আর প্রবাহী থাকবে না । তাহলে সর্বনিমু ষে তাপমাত্রায় পর্যন্ত কোন তেল প্রবাহ করে তাকে সে তেলের প্রবহমানতা বা পোর পয়েন্ট বলে ৷ নিমু তাপমাত্রায় ব্যবহৃত হিমায়নের কম্প্রেসরের জন্য ভেল নির্বাচনে প্রবহ্মানতা বিবেচনায় রাখতে হয়। ক্র্যাঙ্ক কেইস ও ইভাপোরেটরে তেল ঠাগা হলে যাতে প্রবাহ বন্ধ না হয় সেজন্য প্রবহমানতার গুরুত্ব দেয়া হয়। ইভাপোরেটরে তেল ঘন হয়ে দেয়ালে লেগে থাকলে তা হীট ইনসুলেশন হিসেবে কাজ করে। তাই প্রবহমানতা বা পোর পয়েন্ট ইভাপোরেটরের তাপমাত্রা থেকে অনেক নিচে থাকা উচিত।

ক্লাউড পয়েন্ট বলতে কী বুঝায়? অথবা, ক্লাউড পয়েন্ট কী?

বিকশিবো-২০০৭, ২০০৯, ২০১০,২০১২ (পরি), ২০১২, ২০১৪] [বাকাশিবো-২০১২(পরি)]

ঠ ভর 🛮 তেলের মধ্যে কমবেশি মোমজাতীয় শ্বেত পদার্থ থাকে। তেল ঠাণ্ডা করলে এণ্ডলো কোন এক সময় তলানিতে পরিণত হতে তরু করে। সর্বনিমু যে তাপমাত্রায় তেলে অবস্থিত মোমজাতীয় পদার্থ তলানিতে পরিণত হতে তরু করে তাকে ক্লাউড পয়েন্ট বলে।

b1 HFC রেফ্রিজারেন্টে কী ভেল ব্যবহৃত হয় ভার নাম লিখ। অথবা, HFC হিমায়কে যে তেল ব্যবহৃত হয় এটির নাম লেবা

[বাকাশিবো-২০১৫(পরি)]

[छैडरा 🗗

১। Polyolester (রেফ্রিজারেন্ট প্র্যান্টের জন্য)।

অথবা, কম্প্রেসর অয়েল কেন ব্যবহৃত হয়?

২। Polyethylene (কার এয়ারকন্ডিশনিং এর জন্য)।

কম্প্রেসর ওয়েল কী কাজ করে লেব।

[বাকাশিবো-২০১১] [বাকাশিবো-২০০৯, ২০১৫(পরি)]

[💆 হর 🖁] নিম্নে রেফ্রিজারেন্ট অয়েলের কাজ দেয়া হল–

১ | ক্ষয় কমানোর জন্য,

৩। তাপ কমানোর জন্য,

ছোট আকৃতির লিকেজ রোধ করার জন্য,

৫। মুভিং অংশের ধাকা রোধ করার জন্য,

৬। মরিচারোধ করে।

৭। মুভিং অংশসমূহ পরিষ্কার রাখে।

১০। সান্দ্রভার উপর ভাপের প্রভাব দিব।

অথবা, সাম্রতা (Viscosity) এব উপর তাপমাত্রার প্রভাব নিব।

[বাকাশিবো-২০০৯]

🔁 হর 💋 যে কোন ফুইডের তাপমাত্রা বাড়লে সান্দ্রতা কমে এবং তাপমাত্রা কমলে সান্দ্রতা বাড়ে।

১১। ইউটেকটিক ফুইডের ব্যবহার লিখ।

[বাকাশিবো-২০০৭, ০৯, ১২, ১৪]

🕏 তর্ম 🛮 ইউটেকটিক প্লেটের সর্বচ্চ দক্ষতা নিশ্চিত করার জন্য ইউটেকটিক ফুইড ব্যবহার করা হয়।

🔀 সংক্ষিপ্ত প্রস্নোন্তর ঃ

ক্লাউড পয়েন্ট ও পোরপয়েন্ট ভেল নির্বাচনে কীভাবে প্রভাবিত করে?

ঠিতর 🕑 তেলের মধ্যে কমবেশি মোমজাতীয় শ্বেত পদার্থ থাকে। তেল ঠাবা করলে এগুলো কোন এক সময় তলানিতে পরিণত হতে শুরু করে। সর্বনিমু যে তাপমাত্রায় তেলে অবন্থিত মোমজাতীয় পদার্থ তলানিতে পরিণত হতে শুরু করে তাকে ক্লাউড পয়েন্ট বলে। ঠান্তার কারণে তলানি আকারে জমতে থাকলে ইভাপোরেটরের কার্যক্ষমতা হ্রাস পায় এবং এক সময় কম্প্রেসরে প্রয়োজনীয় তেশের অভাব দেখা যায়। সেজন্য তেল নির্বাচনে ক্লাউড পয়েন্ট একটি গুরুত্বপূর্ণ বিষয়।

क्रिक्स<u>्याद्यो विक्</u>राष्ट्राली निमानेम्बलि उन्न निम्प्रस्थ রেফ্রিজারেন্ট অয়েন্/কশেপ্রসর

31 তেল নির্বাচনে সাম্রভার প্রভাব কী?

ಶ 🗷 🗗 60 ঘন সেন্টিমিটার তেল একটি সরু অরিফিসের মাধ্যমে প্রবাহ করতে যে কয়েক সেকেন্ড সময় লাগে তাকে সে তেলের সাম্রতা নদর বা ভিসকোসিটি নম্বর বলে। এটা সেবোন্ট ভিসকোসিমিটারের (Saybolt Viscosimeter) অরিফিসের মাধ্যমে 100° ফাঃ বা 380° সেঃ তাপমাত্রায় তেল প্রবাহের সময় নির্ণয় করা হয়। তেল কত ঘন বা পাতলা তা সান্দ্রতা নম্বরের সাহায্যে বোঝা যায়। তেল বেশি পাতলা বা ভিসকোসিটি বেশি হলে ঘূর্ণায়মান অংশগুলোর মাঝে জায়গা দুখল কর্বে না সুতরাং মাঝামাঝি সান্দ্রতা অনেক কম্প্রেসরের জন্য উপযোগী হতে পারে। তাপমাত্রার পরিবর্তন হলে সান্দ্রতার পরিবর্তন ঘটে। ঘূর্ণায়মান অংশগুলো পিচ্ছিন্স করা ছাড়াও পিস্টন সিলিভারের মাঝে প্রতিবন্ধকতা বা সিল তৈরি করে। ফলে তেল উচ্চ চাপ ও নিমু চাপের মাঝে কৃত্রিম দেওয়াল সৃষ্টি করে। সান্দ্রতা কম হলে প্রতিবন্ধকতা সৃষ্টি করতে পারে না। আবার সান্দ্রতা বেশি হলে ঘর্ষণ বেশি হয়, ফলে কম্প্রেসর চালাতে অধিক শক্তি ব্যয় হয়।

কম্প্রেসর অয়েলের ৪টি বৈশিষ্ট্য লিখ এবং যে কোন একটির ব্যাখ্যা কর। 91

(উছন্ন 🖁) নিম্নে Refrigerant oil এর গুণাবলি দেয়া হল—

- 🕽 📗 রাসায়নিক দৃঢ়তা (Chemical stability) ।
- ২। সান্দ্রতা (Viscosity)।
- ৩। প্রবহ্মানতা (Pour point) ।
- ৪। ক্লাউভ পয়েন্ট (Cloud point)।
- ১। **বাসায়নিক দৃঢ়তা** (Chemical stabitity) ঃ তেলের রাসায়নিক দৃঢ়তা বলতে কোন তেলের দীর্ঘদিন অনবরত পিচ্ছিলকরণসহ প্রচন্ত গরমেও তার গুণাগুণের পরিবর্তন না হওয়াকে বুঝানো হয়। হারমেটিক্যালী সিলড্ কম্প্রেসর চলাকালীন তার অভ্যন্তরের তাপমাত্রা প্রচণ্ড বৃদ্ধি পায় (আমেরিকায় টেকুমশাহ উইন্ডো এয়ারকন্ডিশনারের কম্প্রেসর গায়ে লেখা থাকে-"কম্প্রেসর হাউজিং" (Compressor housing) তাপমাত্রা 302° ফাঃ বা 165° সেঃ পর্যন্ত বৃদ্ধি পেতে পারে) তাহলে দেখা যায় যে, প্রচণ্ড গরমে কম্প্রেসর অয়েলের অন্তিত্ব বজায় থাকে। তেল তার কাজ দীর্ঘদিন দক্ষতার সাথে করে 👍 যায়। অন্যদিকে ইভাপোরেটরে প্রচণ্ড ঠাধায়ও সে তার কার্য ক্ষমতা হারায় না। আবদ্ধ কম্প্রেসর মোটর খারাপ হওয়ার পূর্ব মুহূর্তেও তেলের গুণাগুণ ভাল থাকতে হয়। একটি হারমেটিক মোটর কয়েক দশক/বছর পর্যন্ত কাজ করতে পারে। কিন্তু মোটরের তারের ইনসুলেশন (Insulation) জ্বলে প্রচুর হাইড্রোক্লোরিক অ্যাসিড তৈরি হয়, ফলে তেলের গুণাগুণ নষ্ট হয় দীর্ঘদিন দক্ষতার সাথে কাজ করার জন্য একটি উন্নত তেলে অসম্পুক্ত হাইড্রোকার্বনের হার সবচেয়ে গুরুত্পূর্ণ। অসম্পুক হাইড্রোকার্বন যত কম থাকে তেলের রাসায়নিক দৃঢ়তা তত বৃদ্ধি পায়। ভাল তেল খুব হালকা দেখতে অনেকটা পরিষ্কার পানির মত।

রেফ্রিজারেন্ট অয়েলের প্রকারভেদ লিব। 81

😼 ভর 👨 রেক্রিজারেশন কম্প্রেসরে ব্যবহৃত অয়েল প্রধানত দু'ভাগে ভাগ করা হয়েছে—

- 🕽। মিনারেল অয়েল (Mineral oils)।
- ২। সিনপেটিক অয়েল (Synthetic oils)।

ক্রড অয়েলকে পরিশোধিত করে মিনারেল অয়েল পাওয়া যায় এবং লুব্রিকেশনের জন্য প্যারাফিনিক (Paraffinic) অথবা ন্যাপথেনিক (Nepthenic) বেস ব্যবহার করা হয়। মিনারেল অয়েলকে আবার দু'ভাগে ভাগ করা হয়েছে-

- ১। প্যারাফিন বেস (Paraffin base) ।
- ২। ন্যাপথেনিক বেস (Npathenic base)।

প্রাকৃতিক গ্যাসকে (Natural gas) পরিশোধিত করে সিনথেটিক অয়েল পাওয়া যায়। সিনথেটিক অয়েলকে আবার দু'ভাগে ভাগ করা হয়েছে—

- Dialkylated Benzine / Polyolester 1
- २। Polyethylene glycol।

Œ1 ন্যাপথেন বেস অয়েল কেন বেশি ব্যবহৃত হয়?

😕 হয় 📓 ন্যাপথেন বেস অয়েল রেফ্রিজারেন্টের সাথে সহজে মিলে যায় রেফ্রিজারেন্টের সাথে কোন বিক্রিয়া করে না। এটা কভেন্সারে হাইপ্রেসার এবং হাই টেম্পারেচার আবার লো সাইডে ইভাপোরেটরে নিমু তাপমাত্রায় এ ভেলের বৈশিষ্ট্যের কোন পরিবর্তন হয় না। সহজে কম্প্রেসরে ফিরে আসে। তাই রেফ্রিজারেশনের ক্ষেত্রে ন্যাপথেন বেস অয়েল বেশি ব্যবহৃত হয়।

আধুনিক হিমায়কের জ্বন্য ব্যবহৃত ভেলের গুণাবলি লেখ। [বাকাশিবো-২০১২ (পরি)] অথবা, একটি ভাল কম্প্রেসর অয়েলের কী কী গুণাবলি থাকার প্রয়োজন লেখ। [বাকাশিবো-২০১১] অথবা, কম্প্রেসর অয়েল নির্বাচনের বিবেচ্য বিষয়গুলো লেব। [বাকাশিবো-২০০৮, ২০১১ (পরি)] **অথবা. রেফ্রিজারেশন সিস্টেমে ব্যবহৃত ভেলের ভণাবলি উল্লেখ কর**। [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৭, ২০১০] অথবা, কম্প্রেসর অয়েদ নির্বাচনে যে চারটি বিষয়ে গুরুত্ব দিতে হয়, তা দিব। [বাকাশিবো-২০০৪]

🥩ভন্ন 🖁 নিম্নে Refrigerant oil এর গুণাবলি দেয়া হল–

- রাসায়নিক দৃঢ়তা (Chemical stability) I
- ২। সান্ত্ৰতা (Viscosity)।
- প্রবহমানতা (Pour point) i
- ক্লাউড পয়েন্ট (Cloud point)।
- ফ্লক পয়েন্ট (Floc point)
- বিদ্যুতের প্রবাহে প্রতিরোধ ক্ষমতা (Dielectric strength) ৷
- হাই প্লাস পয়েন্ট .
- নন-অক্সিডাইজেশন
- ভাল তাপীয় স্থায়িত্তা,
- ১০ : সর্বনিমু পরিমাণ আর্দ্রতা ধারণ ইত্যাদি।

🔀 রচনামূলক প্রস্নাবলি ៖

তেল নির্বাচন করতে যে সকল বৈশিষ্ট্য গুরুত্বপূর্ণ তাদের সদদ্ধে লিখ।

ঠিচর সম্বক্তেত 🚱 অনুচেছদ ৮.১ নং দ্রস্টব্য ।

তেল নির্বাচনের ক্লাউড পয়েন্ট, পোর পয়েন্ট এবং ফ্রুক পয়েন্টের গুরুত্ব আলোচনা কর। २।

ভিত্তর সমকেত 🚱 অনুচেছদ ৮.৩ নং দ্রষ্টব্য ।

কম্প্রেসর ওয়েপের গুণাবলি বর্ণনা কর। অথবা, কম্প্রেসর ওয়েদের কী কী ভগাতণ থাকা প্রয়োজন তা ব্যাখ্যা কর।

[বাকাশিবো-২০০৭] বিকিশিবো-২০০৪]

ঠিঃর সহকে*ত* **🔊**) অনুচেছ্দ ৮.৩ নং দ্রষ্টব্য ।

রেফ্রিজারেন্ট অয়েদের প্রকারভেদ উল্লেখ কর। 81

(উষ্টর সংক্রেড 🖁) অনুচেছ্দ ৮.২ নং দ্রষ্টব্য ।

¢1 রেফ্রিজারেশন তেলে স্পেসিফিকেশনগুলো উল্লেখ কর।

(উচন সমকেত 🔊 অনুচেছদ ৮.৫ নং দুষ্টব্য।

রেফ্রিজারেশন ক্ষেত্রে ন্যাপথেন বেস অয়েল বেশি ব্যবহার করা হয় কেন।

উচর সম্বেশ্য 🚮 অনুচেহ্দ ৮.৬ নং দুষ্টব্য :

<u>রিকোভারী বিসাইকেলিং এবং বিক্রেই</u>ম

রেফ্লিক্থারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্লেইয় (Refrigerant recovery, recycling and reclaim)

৯.০ ভূমিকা (Introduction) ঃ

রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম মূলত সিস্টেমের গ্যাস বায়ুমণ্ডলে না ছেড়ে পুনরায় সংগ্রাহক পাত্রে সংরক্ষণ করে সিস্টেমে ব্যবহার করা। যেহেতু CFC গ্যাস ওজোন (O₃) স্তরের জন্য মারাজ্যক ক্ষতি সাধন করে। হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ার মাধ্যমে অন্যত্র সংগ্রহকরণ করাকে হিমায়ক পুনঃলাভ বা রিকোভারী বলে। তেল পৃথকীকরণ, জলীয়কণা ও অস্ত্রত্ব হাসকরণ এবং অন্যান্য অপদ্রব্য অপসারণের জন্য হিমায়ন আবর্তন চক্রে রেখেই যদি কোন হিমায়ক চক্রায়িত করা হয়, তাহলে তাকেই হিমায়ক পুনঃ চক্রায়ন বা রিসাইকেলিং বলে।

অপরদিকে রিক্রেইম হল হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঃলাভের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়, তাহলে তাকে রেফ্রিজারেন্ট রিক্রেইম বলে। নতুন হিমায়ক উৎপাদন করতে ট্যাক্স বা খাজনা দিতে হয় কিন্তু ব্যবহৃত হিমায়ক প্রক্রিয়াজাত করতে কোন ধরনের খাজনা বা ট্যাক্স দিতে হয় না।

আলোচ্য অধ্যায়ে হিমায়ক পুনঃলাভ, পুনঃচক্রায়ন, পুনরুদ্ধার এর জন্য প্রয়োজনীয় যন্ত্রপাতি, নিকুইড হিমায়ক পুনঃলাভ পদ্ধতি, বাঙ্গীয় হিমায়ক পুনঃলাভ পদ্ধতি, সিস্টেম হতে হিমায়ক বের করার নিয়মনীতি, রেট্রোফিট, R-12 এর পরিবর্তে R-134a চার্জ করার পদ্ধতি, ড্রপ-ইন-রেফ্রিজারেন্ট, হাইড্রোকার্বন রেভ এবং পার্থক্যসমূহ সম্পর্কে বিস্তারিতভাবে জানতে পারব :

৯.১ হিমায়ক পুনঃলাভ, পুনঃচক্রায়ন ও পুনরুদ্ধার করা বলতে কী বুঝায় (Refrigerant recovery, recycling and reclaim) ঃ

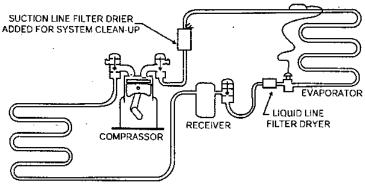
হিমায়ক পুনঃলাভ (Refrigerant Recovery) ঃ

CFC হিমায়ক ওজোন স্তরের জন্য ক্ষতিকারক বিধায় হিমায়ন চক্রের সিএফসি এবং এইচসিএফসি (CFC and HCFC) হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যত্র সংগ্রহকরণকে হিমায়ক পুনঃলাভ বা রিকোভারী বলে।

কোন হিমায়ন চক্র মেরামত, কম্প্রেসর পরিবর্তন বা অপসারণকালে হিমায়ক বাতাস না ছেড়ে সিলিভারে আহরণ করে পুনরায়

সার্ভিস টেকনিশিয়ানরা নিমুলিখিত সমস্যার সম্মুখীন হতে পারে ঃ

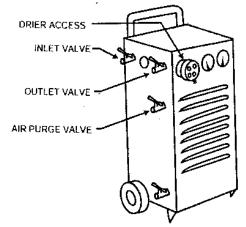
- ১। কম্প্রেসর মোটর চলে না এবং এতে কোন সার্ভিস ভালভ নেই। যেমন– আবাসিক শীতকের হিমায়ন চক্র ও কম্প্রেসর।
- ২। কম্প্রেসর মোটর চলে না এবং এতে কোন প্রবেশ পোর্ট নেই। যেমন~ উইন্ডো কুলার।
- ৩। কম্প্রেসর চলে না এবং এতে সার্ভিস পোর্ট আছে। যেমন- সেম্ট্রাল প্লান্ট।
- 8। কম্প্রেসর চলে না এবং এতে সার্ভিস পোর্ট আছে।
- ৫। কম্প্রেসর চলে। এতে সার্ভিস ভালভ এবং সাকশন ও লিকুউড লাইন আইসোলেশন ভালভ আছে।
- ৬। কম্প্রেসর চলে না। এতে সার্ভিস ভালভ এবং সাকশন ও দিকুইড লাইন আইসোলেশন ভালভ আছে।
- ৭। কম্প্রেসর চলে না এবং এতে সকল সার্ভিস ভালভ সেট রয়েছে।
- ৮ । কম্প্রেসর চলে এবং এতে সকল সার্ভিস ভালভ সেট রয়েছে।
- ৯। হীট পাম্প যাতে উল্লিখিত সুযোগ সুবিধা আছে বা নেই।


<u>রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম</u>

কোন প্লান্ট থেকে হিমায়ক পুনঃলাভ করতে হলে অভিজ্ঞ টেকনিশিয়ানের দরকার। প্রথমে কোন্ ধরনের হিমায়ক আছে তা নিশ্চিত হতে হবে। পরে প্লান্টে কী কী আনুষঙ্গিক ব্যবস্থা আছে তা জানতে হবে। তা ছাড়া হিমায়কের অবস্থাও জানা দরকার আছে। হিমায়কের সাথে বাতাস, জলীয়বাম্প, নাইট্রোজেন, অসুত্ব, অন্য কোন হিমায়ক বা মোটর জ্বলা গ্যাস ইত্যাদি থাকতে পারে। খারাপ হিমায়ক এক প্লান্ট থেকে অন্য প্লান্টে স্থানান্তর করা ঠিক নয়। স্থানান্তর করা হলে অন্য প্লান্টের ক্ষতি হতে পারে। তাতে অর্থ ও সময় নাই হয়। সেন্ট্রাল প্লান্ট বন্ধ হলে ব্যবসায়িক ক্ষতি হতে পারে, কাজের ব্যাঘাত ঘটে। এ ধরনের ক্ষতির পরিমাণ খুবই ক্ষীণ এবং অনেক দিন পর্যন্ত চলতে পারে। এমনকি বছর পরেও ক্ষতির প্রভাব দেখা দিতে পারে। সবচেয়ে বেশি ক্ষতি হয় হারমেটিক বা সেমিহারমেটিক কম্প্রসরের বেলায়। সকল টেকনিশিয়ানই Recovery, Recycling এবং Reclaim Refrigerant সম্পর্কে একটি বছর ধারণা থাকা দরকার। Recovery সম্পর্কে বলা হয়েছে যে, কোন হিমায়ন চক্র থেকে হিমায়ক বের করে অন্যয়ে সংরক্ষণ করা। এটা অন্য কোন চক্রে সরাসরি ব্যবহার করা উচিত নয়। এ সমস্ত হিমায়ক পরিশোধন করে ব্যবহার করা উচিত। উন্নত দেশে CF এবং HCFC হিমায়ক পুনঃলাভ করার পরে পরিশোধনের জন্য আলাদা সিলিভার সংরক্ষণ করে এবং নির্দিষ্ট সম্বের কোম্পানি পরিশোধনের জন্য নেয় কেবত পায়।

কোন হিমায়ন চক্রের হিমায়ক পুনরায় সে চক্রে ব্যবহার করা যেতে পারে। যেমন— কোন চক্রে ছিদ্র দেখা দিলে প্রথমে হিমায়ক কোন পরিষ্কার সিলিভারে অপসারণ করা হল এবং ছিদ্র মেরামত ও বায়ুশূন্যকরণের পর পুনরায় চার্জ করা যেতে পারে।

रिभाग्नक পूनप्रकळांग्रन (Recycling Refrigerant) ३


তেল পৃথকীকরণ (Oil seperation), জলীয়কণা ও অস্ত্রভ্রাসকরণ (Reducing Moisture acidity) এবং অন্যান্য অপদ্রব্য অপসারণের জন্য হিমায়ন আবর্তন চক্রে রেখেই যদি কোন হিমায়ক চক্রায়িত করা হয় তাহলে তাকে হিমায়ক পুনঃচক্রায়ন (Refrigerant Recycling) বলা হয়। অপসারণযোগ্য কোর ফিল্টার-ড্রায়ার বসানো হিমায়ন চক্রে হিমায়ক একাধিক বার চক্রায়িত করা হলে অপদ্রব্য ফিল্টার ড্রায়ারে আটকে যায় এবং হিমায়ক পরিশোধিত হয়। যদি সন্দেহ করা হয় যে, হিমায়কের সাথে ময়লা বা অন্য কোন অপদ্রব্য আছে তাহলে এভাবে পুনঃচক্রায়িত করা হলে ভাল ফল পাওয়া যায়। এ কাজে এক বা একাধিক ফিল্টার ড্রায়ার ব্যবহার করা যায়। অবশ্যই হিমায়ন চক্রে হিমায়ক রেখেই এ কাজ করার স্বন্দোক্ত থাকতে হয়। রিসিভার আউটলেট ভালভ থাকলে তা বন্ধ রেখে কম্প্রেসর চালালে লিকুইড লাইন ও ইভাপোরেটরের হিমায়ক কন্তেশার রিসিভারে জমা করা হয়। এ সময় ফিল্টার ড্রায়ার পরিবর্তন করে নতুন ফিল্টার বসায়ে বায়ুশূন্য করতে হয়। রিসিভার ভালভ খুলে ইউনিট চালাতে হয়। এতে অপদ্রব্য ফিল্টার ড্রায়ার আটকে যায়। প্রান্ট খুব বড় হলে ফিল্টার ড্রায়ার একাধিক লাগাতে হয়।

চিত্র ঃ ৯.১ হিমায়ন চক্রে ব্যবহৃত ফিল্টার ড্রায়ারের সাহায্যে পুনঃচক্রায়ন

সার্ভিস ভালভযুক্ত হারমেটিক কম্প্রেসর মোটর জ্বলে গেলে সার্ভিস ভালভ ফ্রন্ট সিটে রেখে জ্বলা কম্প্রেসর মোটর সরানো হয়।
এ মোটর খুব বেশি জ্বলে থাকলে নতুন কম্প্রেসরের সাকশন লাইনে ফিল্টার ড্রায়ার (যুক্তরাষ্ট্রের ক্যাচ অল ড্রায়ার Catch all drier)
স্থাপন করে হিমায়ক চক্রায়িত করে অপদ্রব্য দ্রীভূত করলে ভাল হয়। ছোট সিল্ড কম্প্রেসর ব্যবহৃত ইউনিটের হিমায়ক রিসাইকেল
ইউনিটের মাধ্যমে পরিষ্কার করে পুনরায় হিমায়ন পদ্ধতিতে প্রদান করা যায়। এটা করার জন্য হিমায়ক আবর্তন চক্র থেকে বের করে
রিকোভারী সিলিভারে জমা করা হয়। সিলিভারে দুটি ভাল্প কাজে লাগায়ে রিসাইকেল ইউনিটের ফিল্টোশন চক্রে কিছু সময় চক্রায়িত
করা হয়। কোন কোন রিসাইকেল ইউনিটে বাতাস বের করারও ব্যবস্থা থাকে।

েন্দ্র নির্মাণ বিকোভারী, রিসাইকেলিং এবং রিক্লেইয

চিত্র ঃ ৯.২ বি-সাইকেল বা রিকোভারী ইউনিট

রিক্রেইম রেক্রিজারেন্ট (Reclaim Refrigerant) 8 কোন হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঃলাভের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয় তাহলে তাকে রেক্রিজারেন্ট রিক্রেইম বলা হয়। ব্যবহৃত হিমায়ক পরিশোধন ও প্রক্রিয়াজাত করে নতুন হিমায়কের মত ব্যবহার করা যায়। নতুন হিমায়ক উৎপাদনের উপর যুক্তরাষ্ট্রে খাজনা বা ট্যাক্স দিতে হয় কিন্তু ব্যবহৃত হিমায়ক প্রক্রিয়াজাত করার জন্য কোন খাজনা দিতে হয় না। হিমায়ক উৎপাদনকারী প্রতিটি সংস্থায় রিক্রেইম করার ব্যবস্থা আছে।

৯.২ বিভিন্ন প্রকার হিমায়ক পুনঃলাভ এবং পুনঃ চক্রায়নের জন্য প্রয়োজনীয় যন্ত্রপাতি (Various types of refrigerant recovery and recycling equipments) ঃ

- বরফের মাধ্যমে হিমায়ক পুনঃলাভ ঃ
 - (ক) গেজ মেনিফোল্ড।
 - (খ) রেফ্রিজারেন্ট সিলিভার ।
 - (গ) বরফ এবং পানি মিশ্রিত পাত্র :
- ২। বরফ এবং লবণ মিশ্রণের সাহায্যে ঃ
 - (ক) গেজ মেনিফোল্ড (ব) হিমায়ক সিলিভার (গ) বরফ ও লবণ মিশ্রিত পানির পাত্র।
- ৩। বরফ ও তব্ধ রাসায়নিক দ্রব্য মিশ্রণ ঃ
 - (ক) গেজ মেনিফোল্ড।
 - (খ) হিমায়ক সিলিভার 🗆
 - (গ) বরফ ও শুরু রাসায়নিক দ্রব্য মিশ্রিত পানির দ্রবণ ।
- ৪। ছাই আইস ব্যবহার করে ঃ
 - (ক) গেজ মেনিফোল্ড।
 - (**ব**) হিমায়ক সিলিডার।
 - (গ) ড্রাই আইস :
- ৫। হিমায়ন চক্র উত্তপ্ত করে ঃ
 - (ক) গেজ মেনিফোল্ড।
 - (খ) রিকোভারী ইউনিট 🛭
 - (গ) রিকোভারী সিলিন্ডার।
 - (ঘ) কম্প্রেসর ক্র্যাংককেস হিটার ।

এ ছাড়াও অপসারণযোগ্য কোর ফিল্টার ড্রায়ার বসানো হিমায়ন চক্রে হিমায়ক একাধিকবার চক্রায়িত করা হলে অপদ্রব্য ফিল্টার ড্রায়ারে আটকে যায়। এক্ষেত্রে এক বা একাধিক ফিল্টার ড্রায়ার ব্যবহৃত হতে পারে।

রেফিজারেন্ট রিকোভারী, রিসাইকোলং এবং রিক্লেইম

হিমায়ক পুনঃলাভের পদ্ধতি (Method of Recovery) ই কয়েক পদ্ধতিতে হিমায়ক চক্র থেকে হিমায়ক পুনঃলাভ করা যায় এখানে যে সমস্ত হিমায়কের পুনঃলাভের কথা আলোচনা করা হবে সেগুলো উচ্চ ও নিমু স্কুটনান্ধ বিশিষ্ট। এগুলোর মধ্যে কিছু CR হিমায়ক এবং কিছু HCFC হিমায়ক কীভাবে পুনঃলাভ করা যায় তা আলোচনা করা হয়েছে। তা ছাড়া হিমায়ক-11 স্কুটনান্ধ বের্বি এবং চাপ কম হওয়া সন্ত্রেও পরিবেশের জন্য অধিক ক্ষতিকারক। তাই এটা কীভাবে পুনঃলাভ করা যায় তাও আলাপ করা হয়েছে হিমায়ক-11 এর স্কুটনান্ধ +23.3° সে. তাই এটা কোন সিস্টেম থেকে বের করা খুব কঠিন কাজ। হাই তাাকুয়াম পাম্পের দরকার অধিক ব্যবহৃত হিমায়কগুলোর মধ্যে হিমায়ক-12 এর স্কুটনান্ধ সবচেয়ে বেলি। এটা বায়ুমগুলীয় চাপে (— 29.8)° সে. তাপমাআ বাম্পীভূত হয়। স্কুটনান্ধ যত নিচু হবে কোন চক্র থেকে হিমায়ক বের করা তত সহজ হবে। কোন হিমায়ন পদ্ধতি থেকে হিমায় পুনঃলাভের উপর স্কুটনান্ধের যথেষ্ট প্রভাব রুয়েছে।

কয়েকটি হিমায়কের স্কুটনান্ধ নিম্নে দেয়া হল ঃ

হিমায়ক	কুটনাঙ্ক (0 সে.)	
হিমায়ক-11	+ 23.3	
হিমায়ক-12	- 29.8	
হিমায়ক-13	. – 97.8	
হিমায়ক-22	-41.3	
হিমায়ক-113	÷ 47.5	
হিমায়ক-134a	– 26.2 ·	
হিমায়ক-500	-33.3	
হিমায়ক-502	- 45.6	

সারণি ঃ ১ হিমায়ক ও হিমায়কের স্ফুটনাঞ্চ

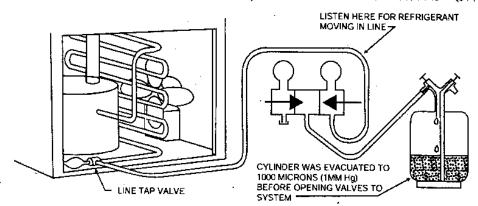
যুক্তরাষ্ট্র, ইউরোপ ও অন্যান্য অনেক দেশে কেবল লাইসেঙ্গপ্রাপ্ত টেকনিশিয়ান হিমায়ক পুনঃলাভ করতে পারে। হিমায়ন গ্ল চারটি শ্রেণিতে ভাগ করা হয়েছে এবং হিমায়ক পুনঃলাভে চার ধরনের লাইসেঙ্গ প্রদান করা হয়। এণ্ডলো হল−

- ১। রেফ্রিজারেটর, ডিপফ্রিজার, উইন্ডো এয়ারক্ডিশনার, ওয়াটার কুলার, ভেডিং, মেশিন, ডিহিউমিডিফায়ার এবং অন্য অনেক ছোট হিমায়ক যদ্ধের হিমায়ক পুনঃলাভ। এসব যন্তে হিমায়ক খুব কম থাকে এবং আশি থেকেই নকাই শতা সহজেই সংগ্রহ করা যায়। তবে সম্পূর্ণ হিমায়ক পুনঃলাভ উত্তম। এ হিমায়ক রিক্রেইম করার জন্য বিশেষ নিরাণ সিলিভারে সংগ্রহ করা হয়।
- ২। 25 টন ক্ষমতাসম্পন্ন হিমায়ন আর একটি শ্রেণির অন্তর্ভুক্ত। এ শ্রেণিতে উচ্চ চাপের হিমায়কের পরিমাণ 25 কেজি প হতে পারে। পুনঃলাভ করার সময় হিমায়কের চাপ 10 থেকে 20 ইঞ্চি মার্কারি হতে পারে।
- ৩। 25 টন ক্ষমতার উধের্ব আর এক শ্রেণির অন্তর্ভুক্ত। ছোট থেকে মাঝারি ধরনের অফিস বিচ্ছিৎ শীতাতপ নিয়ন্ত্রণ যন্ত্র শ্রেণিভুক্ত করা হয়। পুনঃলাভ করার সময় ইউনিটের চাপ কমপক্ষে 20 ইঞ্চি মার্কারি পর্যন্ত নামাতে হয়।
- 8। বড় বড় দালান ও শিল্প কারখানায় শীতাতপ নিয়ন্ত্রণ যত্ত্বে নিমুচাপের হিমায়ক-11 এবং হিমায়ক-113 ব্যবহৃত প্লান্ট ও এক শ্রেণির অন্তর্ভুক্ত। এ ধরনের হিমায়ক পুনঃলাভ খুব কঠিন কাজ। উচ্চ স্কুটনান্তের কারণে উচ্চ শূন্যতায় দীর্ঘ স রিকোভারী মেশিন চালাতে হয়। সূতরাং টেকনিশিয়ানের লাইসেন্স দেখেই জানা যায় যে সে কোন শ্রেণির হিমা রিকোভারী করতে পারে।

বাষ্পীয় বা তরল বা বাষ্প তরলের মিশ্রণ হিমায়ক পুনঃলাভ করা যায়। তবে খেয়াল রাখতে হয়, হিমায়কের সাথে সেখ্যালিত হয়। হিমায়ক বাষ্পীয় আকারে পুনঃলাভ করা হলে চক্রে তেল থেকে যায়। এ তেল ক্ষতিগ্রস্ত হলে তা বের করার বিপদসদ্ধুল আবর্জনা (Hazerdous Waste) লাইসেন্সপ্রাপ্ত টেকনিশিয়ানের সহায়তা নিতে হয়।

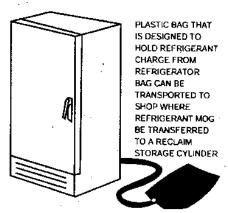
অনুমোদিত সিলিভার ছাড়া হিমায়ক স্থানান্তর করা থাবে না। সিলিভারের উপরের অংশ হলুদ রঙ করা থাকে। সিলিভারের উদ্দৃটি ভাল থাকে যাতে একটি ভালভের মাধ্যমে তরল এবং অন্যটির মাধ্যমে বাষ্প নির্গত করা যায়। পরিষ্কার সিলিভারে হিমা পুনঃলাভের পূর্বে ভ্যাকুয়াম পাম্পের সাহায্যে বায়ুশূন্য করে নিতে হয়। হিমায়ক পুনঃলাভের পূর্বেই সিলিভার ও সংযোগ্য লাইনগুলো বায়ুশূন্য করা দরকার।

বিভিন্ন পদ্ধতিতে কোন হিমায়ন চক্র থেকে হিমায়ক অপসারণ করা যায়। এ পদ্ধতিগুলো দু'ভাগে ভাগ করা হয়েছে। একটি কোন রকম রিকোভারী বা রিসাইকেল ইউনিট ব্যবহার না করে তথু সিলিভারকে ঠাগু করে। অন্যটি হল রিকোভারী বা রিসাই। ইউনিটের মাধ্যমে।


ত্তি বিক্রোভারী, রিসাইকোল্য এবং রিক্রেইম

৯.৩ পিকুইড হিমায়ক পুনঃপাভ পদ্ধতি (Describe the procedure of liquid refrigerant recovery) ?

হিমায়ন যন্ত্র (Appliance) **থেকে হিমায়ক পুনঃলাভ**ঃ বড় ইউনিটের পরিবর্তে ছোট ইউনিট থেকে হিমায়ক পুনঃলাভ অনেক সহজ কাজ। কারণ ছোট ইউনিটে হিমায়কের পরিমাণ খুব কম থাকে। এগুলোতে সর্বাধিক 15 কেজি হিমায়ক থাকে। এটা বাষ্পীয় আকারে পুনঃলাভ করা হয় এবং 1000 মাইক্রোন শুন্যতা পর্যন্ত টানা উচিত। হিমায়ন যন্ত্রের চার্জিং লাইনে লাইন ভাল্প বা পায়ার্চিং ভাল্প সংযোগ করে তার সাথে চার্জিং হোজের মাধ্যমে রিকোঙারী ইউনিটের সাকশন লাইন বা ডেপার কালেকশনের সাথে সংযোগ 'ফরতে হবে ৷ চার্জিং লাইন সম্পূর্ণরূপে বায়ুশূন্য করার পর লাইন স্টাপ ভাষ**্যা পায়ারচিং খুলে হিমায়ক পুনঃলা**ঞ্জ করতে হবে _।


হিমায়ক পুনঃলাভ করতে নিম্নুলিখিত ধাপগুলো অনুসরণ করা যায়।

- ১। সিলিভার 29.9 ইঞ্চি মার্কারি বা 1000 মাইক্রেম পর্যন্ত সুন্যতা করতে হবে।
- ২। কভেন্সারের শেষ মাথায় বা স্ট্রেনারের গোড়ায় ইট লাইন ট্যাপ ভাল্প সংযোগ করতে হবে।
- লাইন ট্যাপ ভালভ ও সিলিন্ডারের সাথে লাইন সংযোগ করে চার্জ করতে হবে।
- 8। চক্রেন্র কম্প্রেসর চললে, তা চালু করে লাইন ভালভ খুলতে হবে:
- পিলিভার এবং চক্রের চাপ সমান হলে প্রবাহ বন্ধ হবে, প্রয়োজনে সিলিভার ঠাপ্তা করতে হবে।
- সিলিভার ভালত এবং লাইন ট্যাপ ভালত বন্ধ করতে হবে, সিলিভার ও গেজ মেনিফোল্ড সরিয়ে নিতে হবে।

চিত্র ঃ ৯.৩ লিকুইড লাইনে লাইন ট্যাপ ভালভ স্থাপন করে হিমায়ক সংগ্রহ করার পদ্ধতি

রৈঞ্চিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্লেইম কম্প্রেসর চালালে হিমায়ক ইভাপোরেটর থেকে টেনে নেয় এবং কভেন্সারে উচ্চ চাপ সৃষ্টি করে। ফলে রিকোভারী সিলিভার হিমায়ক হস্তান্তর সহজ হয় ৷ কম্প্রেসর মোটর ভাল থাকলে এ গ্যাস সরাসরি অন্য বা একই ইউনিটে চার্জ করা যাবে কিন্তু মোটর জ্বলে গেলে তা সরাসরি চার্জ করা উচিত নয়। ক্যাচ অল জায়ারের মাধ্যমে পরিশোধন করা যায়, তবে খুব বেশি নষ্ট হলে তা রিক্রেইম 트 করার জন্য রিক্লেইম কোম্পানিতে পাঠাতে হবে।

চিত্র ঃ ৯.৪ আবাসিক শীতকের হিমায়ক বিশেষ ধরনের প্রাস্টিকের বেনোর মধ্যে সংগ্রহ

ß

র

ग्र (I)

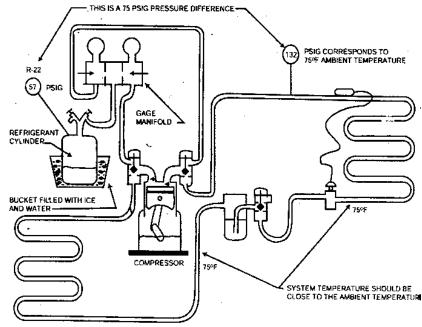
শ

ना

রে

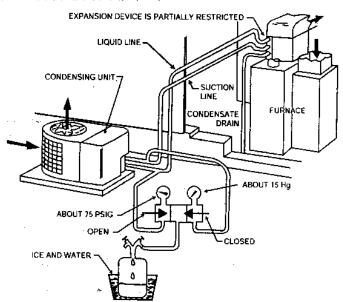
ক

ারী


ফো ফল

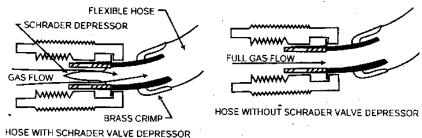
৯.৪ বাস্পীয় হিমায়ক পুনঃলাভ পদ্ধতি (Describe the procedure of vapour refrigerant recovery) ঃ

বাস্পীয় হিমায়ক পুনঃলাভের কয়েকটি পদ্ধতি নিম্নে দেয়া হল ঃ বরফের মাধ্যমে হিমায়ক


বরফের মাধ্যমে হিমায়ক পুনঃলাভঃ

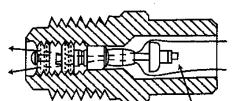
রিকোভারী সিলিভার বরফের মাধ্যমে ঠাঙা করেঁ ইউনিট ও সিলিঙারের মধ্যে চাপে পার্থক্য সৃষ্টি হয়। ফলে হিমায়কের কৃত্রিম প্রবাহ সৃষ্টি হয়। প্রথমে বাষ্পীয় হিমায়ক সিলিভারে আসতে থাকে এবং পরে ইউনিটের তরল হিমায়ক বাষ্পীভূত হয়ে প্রবাহিত হয়। ইউনিটে তাপ এবং সিলিভার অধিক ঠাঙা করে এ কাজ ত্রান্থিত করা যায়। এ কাজ অনেকভাবে করা যায়, তবে বড় প্লান্টে প্রয়োগ করা যায়, অবে বড় প্লান্টে প্রয়োগ করা যায় এমন একটি ব্যবস্থা ৯.৫ নং চিত্রে দেখানো হল।

চিত্ৰ ৪ ৯.৫ রিকোভারী সিশিধার বরফের সাহায্যে ঠাণ্ডা করে হিমায়ক পুনঃলাভ

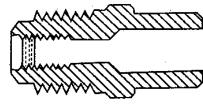

সর্বোচ্চ হিমায়ক পুনঃপাভ করতে হলে ৯.৫ নং চিত্রের ন্যায় সংযোগপূর্বক ইউনিটের কম্প্রেসর চালাতে হবে। তাতে তর্ম হিমায়ক সিলিভারে দ্রুত সংগৃহীত হবে। সিলিভার নিমিত্তে বসায়ে/ঝুলিয়ে গ্যাসের পরিমাণ নিশ্চিত হতে হবে। সিলিভার ভর্তি হ্রে হাইপ্রেসার গেজ ভালভ ও সিলিভার ভাল্প বন্ধ করতে হবে। ভর্তি সিলিভার সরিয়ে নতুন খালি ও বায়ুশূন্য সিলিভার সংযোগ ও ঠাও করতে হবে। সিলিভারের সংযোগ লাইন পার্জ করতে হবে। ভারপর সিলিভার ও গেজ ভালভ খুলতে হবে। খেয়াল রাখতে হবে ফে কম্প্রেসর অত্যধিক গরম না হয়। বেশি গরম হলে কিছু সময় বিশ্রাম দিতে হবে। এভাবে হিমায়ক পুনঃলাভ করার সময় হাতে গ্লোগ এবং চোখের নিরাপতার জন্য সেই গগলস পরিধান করা উচিত।

চিত্র ঃ ৯.৬ বড় প্রান্ট থেকে হিমায়ক উদ্ধার করার একটি কৌশল চিত্র

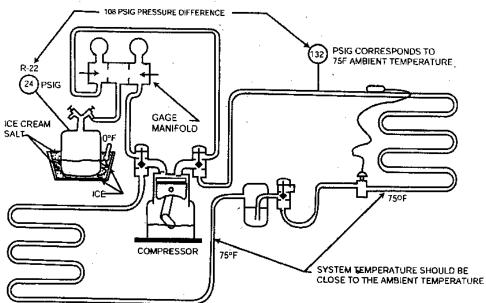
রসাইকেলিং এবং রিক্রেইম


রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

চিত্র ৪ ৯.৭ হিমায়ক দ্রুত অপসারণের জন্য চার্জিং হোজের স্রেডার ভালভ অপসারণ চিত্র

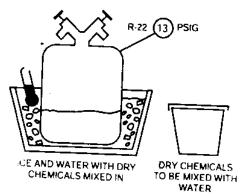

গেছের মধ্যে স্রেডার ডিপ্রেসর (Schrader Depressor) গড়ায়ে নিলে হিমায়কের প্রবাহ বাড়ে। লাইনের স্রেডার ভালত স্টেম সরালে হিমায়কের প্রবাহ আরও সহজ হয়।

> THIS SCHRADER VALVE HAS BEEN DEPRESSED BUT IT STILL CAUSES A PRESSURE DROP. IT IS A RESTRICTION TO GAS FLOW

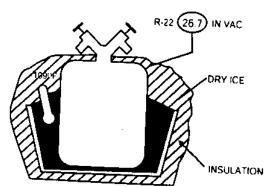

SCHRADER VALVE STEM

THIS SCHRADER VALVE HAS BEEN REMOVED FOR MORE FLOW

চিত্র ঃ ৯.৮ সম্পূর্ণ অপসারিত অবস্থায় চার্জিং হোজের শ্রেডার ভাল

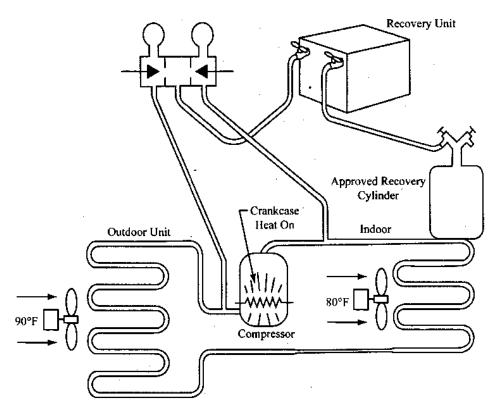

বরক ও শবর্ণ মিশ্রণের সাহাব্যে ঃ সিলিভার ঠাতা করার জন্য বরফের গুঁড়ার সাথে লবণ মিশালে আরও অধিক ঠাতা পাওয়া যায়। তাতে ইউনিট থেকে হিমায়ক আহরণ দ্রুত করা সম্ভব। লবণ-বরক চুর্ণ ব্যবহার করা হলে সিলিভার ধৌত করা দরকার, যাতে লবণের প্রভাবে মরিচা না পড়ে। প্রতিবার ব্যবহারের পরে রিকোভারী সিলিভার খুব ভালভাবে পরিষ্কার করা দরকার। লক্ষ রাখতে হবে সিলিভারে মরিচা পড়ে কি না।

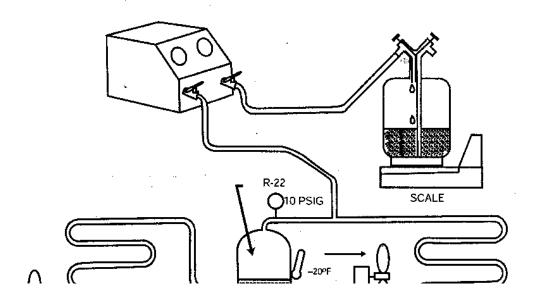
চিত্র ঃ ৯.৯ লবণ ও বরফ মিশ্রণ ব্যবহার করে হিমায়ক আহরদ


্রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

বরক ও তক্ক রাসারনিক প্রব্য মিশ্রবের সাহাব্যে ঃ বরক ও পানির সাথে বিশেষ ধরনের তক্নো রাসায়নিক পাউভার মিশায়ে সিলিভারের তাপমাত্রা (– 15)° সে. পর্যন্ত কমানো যায়। বরক, পানি ও রাসায়নিক পাউভার একত্রে মিশালে তাপমাত্রা দ্রুত হ্রাস পায়, ফলে বুব অন্ন সময়ের মধ্যেই হিমারক সিলিভারে ভর্তি করা যায়।

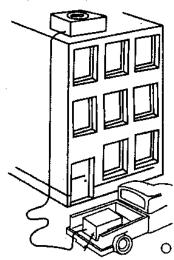
চিত্র ঃ ৯.১০ বরকের ওঁড়া, পানি ও বিশেষ তত্ব পাউড়ার যিপুপের মাধ্যমে যিপ্রপের তাপমাত্রাক্র


দ্রাই আইস ব্যবহার করে 2 দ্রাই আইস বা কঠিন কার্বন ডাই-অক্সাইড ব্যবহার করে সিলিভারের ভাপমাত্রা অধিক হ্রাস করা যায়। ব্যয়সাপেক্ষ কঠিন কার্বন ডাই-অক্সাইড (- 78)° সে, তাপমাত্রা সরাসরি বাল্পে পরিণত হয়। দ্রাই আইস খালি হাতে স্পর্ল করলে হাত পুড়ে যাওয়ার সম্ভাবনা থাকে। এজন্য দ্রাই আইসের মাধ্যমে হিমায়ক পুনঃলাভ করার সময় হাতে গ্লোভস্ পরা উচিত।


চিত্র : ১.১১ ড্রাই আইস ব্যবহার করে সিলিভারের ভাগমাত্রা, করার চিত্র

বিমায়ন চক্র উত্তর্ধ করে ঃ সিলিভারে বিমায়ক ফিরিয়ে নেয়ার পূর্বে হিমায়ন চক্র যতদূর সন্থব গরম করে নেয়া হয়। প্রান্ট চালু থাকলে কম্প্রেসর বন্ধ করে প্রথমে ইভাপোরেটরের তাপমাত্রা দ্রুত বৃদ্ধির ব্যবস্থা করা। তাপমাত্রা বৃদ্ধি করতে কম্প্রেসর বন্ধ করে ইভাপোরেটর চালু রাখা হয়। ইভাপোরেটরে বরক থাকলে প্রয়োজনে গরম ব্যবহার করা। কম্প্রেসর মোটর সংযোগ বিচ্ছিল্ল করে ব্রাদ্ধি কেন্ হিটার চালু রাখা। সিলিভারে হিমায়ক পুনঃলাভের সময় প্রয়োজনে কৃত্রিম উপায়ে হিমায়ন চক্রের অন্যান্য অংশে তাপ প্রয়োগ করা। তাপ প্রয়োগের সময় সাবধানতা অবলঘন করতে হবে যাতে অত্যধিক তাপে পুরনো টিউব বা পাইপের দুর্বল ছানে ছিদ্রের সৃষ্টি না করে। টিউবের অবস্থা বুঝে তাপ প্রয়োগের মাত্রা নির্ধারণ করতে হবে। চক্রে তাপ প্রয়োগের কলে হিমায়ক বাল্পীভূত হয় এবং অধিক চাপের সৃষ্টি করে ফলে নিমুচাপের দিকে প্রবাহিত হয়। তাপ প্রয়োগ না করা হলে হিমায়ক পুনঃলাভ করার সময় কোন অংশে তাপমাত্রা অনেক কমে যায়। তরল হিমায়ক বাল্পীভূত হওয়ার কলে এরূপ হয়ে থাকে। এভাবে বাল্পীয় হিমায়ক স্থানাভ র সুবিধা হল যে, চক্রের তেল চক্রে থেকে যায়। হিমায়ক ভাল থাকলে অন্য কোন হিমায়ন চক্রে বা একই প্লান্ট নবায়নের পরে ব্যবহার করা যায়। অন্য কোন প্রান্টে হিমায়ক চার্জ করার সময় একটি ক্যাচ্ অল দ্রায়ারের (Catch all drier) মাধ্যমে করলে ভাল হয়। এতে হিমায়ক পরিশোধিত হয়।

রেফিন্সারেন্ট বিকোভারী, রিসাইকেলিং এবং রিক্তেইম

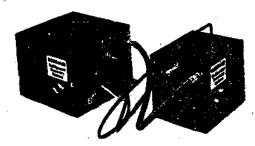


চিত্র ঃ ৯.১২ হিমায়ন চক্রে তাপ প্রয়োগ করে চাপ বাড়ানো এবং রিকোভারী দ্রুততর করা

যাত্রিক পুনঃলাভ পদ্ধতি ঃ বিভিন্ন ধরনের হিমায়ক পুনঃলাভ পদ্ধতি তৈরি ও ব্যবহৃত। এগুলোর মধ্যে কোনটা শুধু হিমায়ক পুনঃলাভের জন্য তৈরি করা হয় আবার কোনটা হিমায়ক পুনঃলাভ ও হিমায়ক পুনঃচক্রায়ন (Recycling) করার জন্য তৈরি করা হয়। আবার কোনটা বেশ জটিল এবং ভারী হয়, যা হিমায়ক পরিশোধন করার জন্য ব্যবহৃত হয়। হিমায়ক নষ্ট হলে ব্যবহার স্থ্রেই পরিশোধন ও প্রক্রিয়াজাত করে পুনঃব্যবহার নিশ্চিত করার জন্য রিক্রেইম ইউনিট ব্যবহৃত হয়।

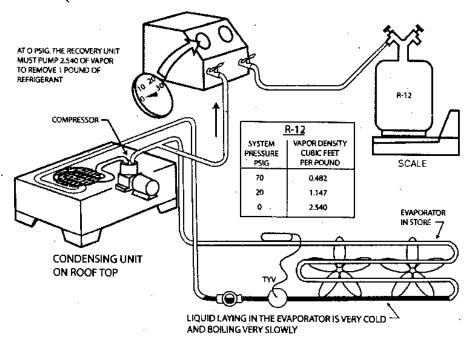
রিকোভারী বা রিক্রেইম ইউনিট তৈরি করার জন্য কতকগুলো বৈশিষ্ট্য লক্ষ রাখা দরকার। হালকা, শব্দ কম, বহনযোগ্য, দামে কম ইত্যাদির দিকে লক্ষ রাখাই প্রধান বিবেচ্য বিষয় হওয়া দরকার। সহজেই যাতে দালানের উপরে বা এদিক সেদিক বহন করা যায় তার জন্য গুজনকে প্রাধান্য দেয়া হয়। এটা যাতে সিঁড়ি বেয়ে উপরে উঠানো যায় সেজন্য খুব বড় করা যাবে না। আবার খুব বেশি ছোট করলে খুব বেশি হিমায়ক টানা সম্ভব নয় এবং হিমায়ক সংরক্ষণ সম্ভব নয়। ইউনিট আকারে বড় হলে কীভাবে হিমায়ক রিকোভারী করা হবে তার একটি নমুনা আগে এ দেখানো হয়েছে। গুজন যদি বড় সমস্যাই হয় তাহলে অনেক লখা হোজ (Hose) সাথে রাখতে হবে। চিত্রে দেখানো হয়েছে যে কন্ডেন্সিং ইউনিট দালানের ছাদে বসানো আছে। সেখান থেকেই গাড়িতে বসানো রিকোভারী ইউনিটের মাধ্যমে হিমায়ক সংগ্রহ করতে দেখা যাচেছ।

👓 চিত্র ঃ ৯.১৪ ছাদের উপর বসানো ইউনিট থেকে হিমায়ক রিকোভারী


অনেক ইউনিটে চাকা লাগানো আছে। এগুলো সমতল জায়গায় এদিক সেদিক বহন করা সহজ। ওধু পুনঃলাড বা রিকোভারী করার জন্য ইউনিট তৈরি করলে আকারে ছোট করা যায়, কিন্তু পুনঃচক্রায়ন (Recycling) করার জন্য ওয়ার্কশপে যাওয়ার দরকার। ছোট ইউনিট থেকে হিমায়ক পুনঃলাভ করে অন্যুত্ত রিসাইকেলিং করা সময় ও অর্থ নষ্ট হয়। তা ছাড়া একপাত্র থেকে অন্যপাত্রে হিমায়ক স্থানাজর করার সময় কিছু হিমায়কের অপচয় ঘটে। সেজন্য রিকোভারী ও রিসাইকেলিং ইউনিট একত্রে থাকলে অধিক সুবিধাজনক। শপ থেকে দূরে কোন ইউনিট থেকে হিমায়ক সংগ্রহ করে চক্রায়নের পর ঐ স্থানেই আবার হিমায়ক চার্জ করা যায়। ইউনিট বহন সহজ করার জন্য দু'টি অংশে বিভক্ত করা হয়। কাজের সময় দুটি অংশ ৯.১৬ নং চিত্রের সংযোগ করে কাজ করা হয়।

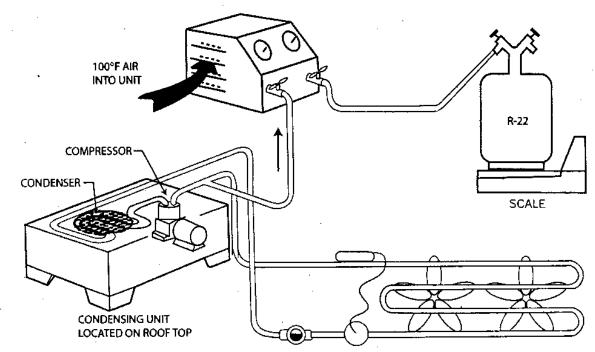
চিত্র ঃ ১.১৫ ব্রিকোভারী বা বিসাইকেল ইউনিট

রফিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম


বাষ্প, তরল বা তরল ও বাষ্পীয় আকারে হিমায়ক রিকোভারী করা হয়। সরাসরি তরল হিমায়ক রিকোভারী সিলিভারে নেয়া হলে হিমায়ন চক্রের তেল চলে আসে। সেজন্য রিকোভারী ইউনিটের কম্প্রেসরের মাধ্যমে হিমায়ক টানা হয়। একটি রেসিপ্রোকেটিং বা রোটারি কম্প্রেসর ব্যবহৃত হয়। রেসিপ্রোকেটিং কম্প্রেসরের ওজন বেশি, জায়গা বেশি দখল করে। কম্প্রেসর আকারে বড় হলে কন্ডেন্সার আকারে বড় হয়। তাই মোট গুজন বেশি হয় এবং জায়গাও বেশি লাগে। তবে রোটারি কম্প্রেসর ব্যবহৃত হলে জায়গা কম লাগে এবং ওজনে হালকা হয়। আর রোটারি কম্প্রেসরের শূন্যতা বা ভ্যাকুয়াম করার ক্ষমতাও বেশি।

চিত্র ৪ ৯.১৬ একটি রিকোভারী ইউনিট

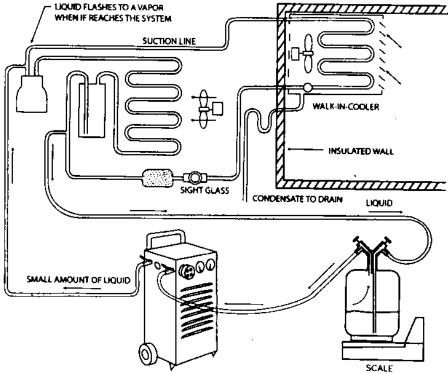
তরল অবস্থায় হিমায়ক দ্রুত পুনঃলাও করা যায়। তরল হিমায়ক জায়গা কম দখল করে। বড় ইউনিটের অধিকাংশ তরল হিমায়ক থাকে রিসিভারে।


বাস্পীয় অবস্থায় হিমায়ক স্থানান্তর প্রচুর সময় লাগে। চার্জিং হোজে বাঁধার জন্যও হিমায়ক পুনঃলাভে প্রচুর সময় লাগে। সময় কমাতে হলে হিমায়ন চক্র উত্তও করা, সিলিভার ঠাণ্ডা করা এবং উচ্চ ক্ষমতার রিকোভারী ইউনিট ব্যবহার করতে হবে। রিকোভারী ইউনিট চালু করলে হিমায়ন চক্রের হিমায়কের চাপ কমে যাওয়ার কারণে সাকশন প্রেসর কমে যায়, এতে রিকোভারী ইউনিটর ক্ষমতা হোস পায়। উদাহরণস্বরূপ বলা যায়, 70 PSIG চাপে এক পাউভ হিমায়ক; R-12 মাত্র 0.482 ঘনফুট বাস্প হিমায়ক অপসারণের দরকার হয়। সেক্ষেত্রে এক পাউভ একই হিমায়ক 20 PSIG-তে 1.147 ঘনফুট বাস্প এবং 0 PSIG-তে 2.54 ঘনফুট বাস্প অপসারণের দরকার তাহলে দেখা যায় যে চাপের পতনের সাথে সাথে রিকোভারী বা রিসাইকেলিং এর হার কমে যায়। চাপ কমার সাথে সাথে আয়তন বৃদ্ধি পায় ফলে রিকোভারীতে বেশি সময় লাগে।

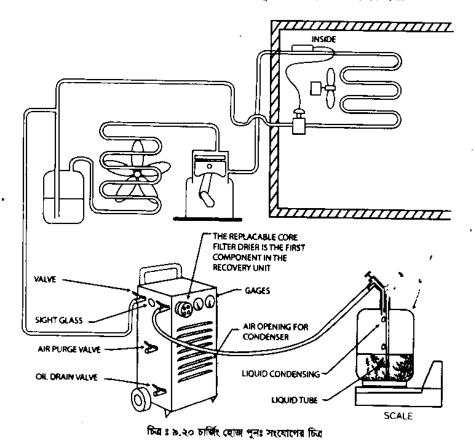
চিত্র ৪ ৯.১৭ বিভিন্ন চাপে হিমায়কের আয়তনের পরিবর্তন হয়। এতে রিকোভারীতে সময়ের পার্থক্য ঘটে

জ্ঞারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

কভেনিং ইউনিটের অবস্থানের উপর হিমায়কের চাপ নির্ভর করে। কভেনিং ইউনিট রোদ্রে থাকলে চাপ অধিক থাকে। ধরা যাক ছাদে এবং রোদ্রে বসানো একটি কভেনিং ইউনিট থেকে হিমায়ক পুনগ্লাভের সময় রিকোভারী ইউনিটে সাকশন প্রেসর অধিক হবে। এতে কম্প্রেসরের মোটর অধিক কারেন্ট গ্রহণ করবে এবং ইউনিটের মোটরের ক্ষতি হবে। এটা যাতে হতে না পারে সেজন্য অনেক ইউনিটের কম্প্রেসরের সাথে ক্র্যাঙ্ক কেস প্রেসর রেগুলেটর দেয়া থাকে। এতে অধিক সাকশন চাপেও কম্প্রেসর নিরাপদ থাকে। ৯.১৮ নং চিত্রে এ ধরনের একটা ব্যবস্থা দেখানো আছে।

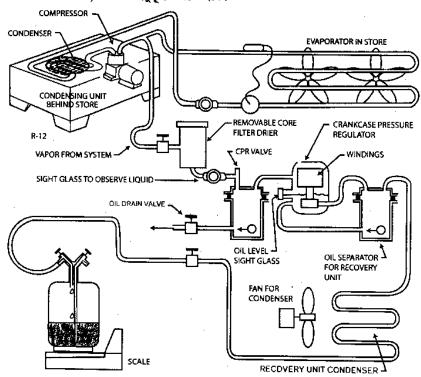


চিত্র ঃ ১.১৮ রিকোভারী ইউনিটের ব্যবহৃত কম্প্রেসরের সাকশন দাইন ব্যবহৃত ক্রেম্ব কেইস প্রেসর রেগুপেটব

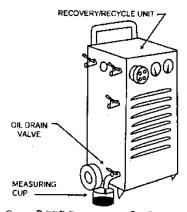

রিকোভারী বা রিসাইকেল ইউনিটের কম্প্রেসর কেবল বাষ্পীয় হিমায়ক পাম্প করতে পারে কিন্তু তরল হিমায়ক পাম্প করতে পারে না। তাই তরল হিমায়ক বিশেষ ব্যবস্থায় সিলিভারে নেয়া হয়। রিকোভারী ইউনিটের সাকশন লাইন রিকোভারী ইউনিটের সাকশন লাইন রিকোভারী ইউনিটের সাকশন লাইন রিকোভারী সিলিভারের বাষ্প সংযোগ এবং হিমায়ন চক্রের তরল লাইন সিলিভারের তরল সংযোগের সাথে সংযোগ করা হয়। রিকোভারী ইউনিটের সাকশন লাইন রিকোভারী সিলিভারের পাম্প সংযোগ এবং হিমায়ন চক্রের তরল লাইন সিলিভারের তরল সংযোগের সাথে সংযোগ করা হয়। ইউনিটের ভিসচার্জ লাইন হিমায়ন চক্রের ন্যায় সাথে সংযোগ করা হয়। রিকোভারী ইউনিটে চালু করা হলে সিলিভারের বাষ্প টানে এবং তরল করে পুনরায় হিমায়ন চক্রে পাঠায়। এ তরল হিমায়ক হিমায়ন চক্রে বাষ্পীয় আকারে ছাড়ার ফলে অধিক চাপের সৃষ্টি করে। এতে তরলের উপর চাপ বৃদ্ধি পায় এবং তরল হিমায়ক রিকোভারী সিলিভারে প্রবেশ ত্বরান্থিত করে। রিকোভারী ইউনিটে একট সাইট গ্লাস (Sight Glass) বসানো থাকে, যাতে এ ধরনের হিমায়ক প্রবাহ বোঝা যায়। সিলিভার যাতে অতিরিক্ত ভর্তি না হয়, সেজন্য ওজন করা হয়। যখন নিশ্চিত হল যে, আর তরল প্রবাহ সাইট গ্লাসের দেখা যায় না, তখন রিকোভারী ইউনিটের সাকশন লাইন হিমায়ন চক্রের সাথে সংযোগ করতে হবে। কিন্চিত হতে হবে যে, হিমায়ন চক্রের সকল ভাল্ব থোলা আছে। রিকোভারী ইউনিট চালিয়ে সমস্ত বাম্পীয় হিমায়ক টেনে নিতে হবে। কোন কোন রিকোভারী বা রিসাইকেল ইউনিটের কম্প্রেসরের সাকশনে ক্রেইস প্রেসর রেগেলেটর বসানো থাকে যাতে ওভারলোড না হয় এবং এটা তরল প্রবেশের হাত থেকে কিছুটা রক্ষা করে।

রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

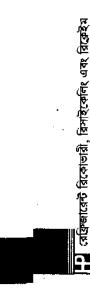
রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিফ্রেইম

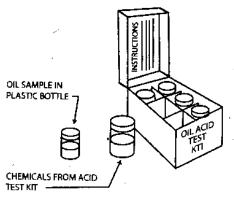


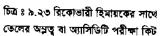
চিত্র ঃ ৯.১৯ তরদ হিমারকের মাধ্যমে চাপ প্রয়োগ শূন্যতা করে হিমারন চক্র ছেকে হিমারক

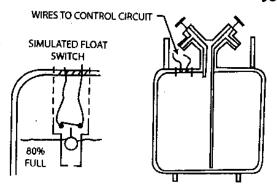


আাডভান্সড রেফ্রিক্টারেশন অ্যান্ড এয়ারকভিশনিং–১৯

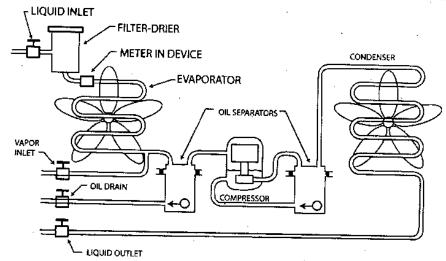

তরল হিমায়ক রিকোভারী করার সময় মনে রাখতে হবে যে, তরল সাথে কল্পেসর অয়েল রিকোভারী সিলিভারে প্রবেশ করে। যখন হিমায়ক চার্জ করা হয় তখন এ তেল আবার সিস্টেমের ফিরে যায়। তরল হিমায়কের তেল পৃথক করার রিকোভারী বা রিসাইকেল ইউনিটের পূর্বে অয়েল সেপারেটর বসানো হয়। যে পরিমাণ তেল সেপারেটরে পাওয়া যায় সে পরিমাণ তেল আবার সিস্টেমের কম্প্রেসরে দিয়ে দিতে হয়। চিত্রে বিভিন্ন অংশ বিভিন্ন অবস্থায় একট রিকভারী ইউনিট দেখানো হল। সংযোজিত অবস্থায় একটি রিকোভারী/রিসাইকেল ইউনিট চিত্রে দেখানো হল। হিমায়ন চক্রের হারমোটিক মোটর জুলে গেলে তেলের অমৃত্ব বা অ্যাসিডিটি পরীক্ষা করা প্রয়োজন হয়। এটা পরীক্ষা করার জন্য অ্যাসিড টেস্ট কিট (Acid test kit) পাওয়া যায়। অন্যদিকে রিকোভারী সিলিভারে তরল হিমায়ক ভর্তি হলে যাতে ইউনিট বন্ধ হয়ে যায় সেজন্য সিলিভারের ভিতরে ফ্লোট ভালভ চালিত একটি সুইচ অফ করার ব্যবস্থা থাকে। সিলিভারের ধারণক্ষমতা আলি শতাংশ ভর্তি হলে সুইচ অফ হয়। এটা অধিক হিমায়ক ভর্তির হাত পেকে রক্ষা করে তার টেকনিশিয়ানকে তরল হিমায়ক ভর্তির অবস্থা জানায়ে পেয়। সাবধান থাকতে হবে যে হিমায়ক পুনঃলাভ করার পূর্বে অবশাই রিকোভারী সিলিভার পরিছার, খালি ও বায়ুশুন্য করতে হবে।




চিত্র ঃ ৯.২১ রিকোভারী শুরার সময় খোলা অবস্থায় একটি রিকোভারী ইউনিট



চিত্র ৪ ৯.২২ রিকোভারী ইউনিটের মাধ্যমে সংগৃহীত হিমায়কের সাথে নির্গত



চিত্র ঃ ৯.২৪ সিপিভারের অভিরিক্ত হিমায়ক ভর্তি যাতে হতে না পারে ডার জন্য সিপিভারের ভিতরের ফ্রেমট সুইচ এক রানের রিকোভারী/রিসাইকেল ইউনিট আছে যার মধ্যে তরন্স ও বাস্পীয় হিমায়ক রিকোভারী করার ব্যবস্থা আছে

চিত্র ঃ ৯.২৫ একটি অত্যাধুনিক রিকোভারী ইউনিট যার মাধ্যমে তরল ও বাস্পীয় হিমায়ক সহজেই সংগ্রহ করা যায়

৯.৫ সিস্টেম থেকে হিমায়ক বের করার জন্য কী কী নিরাপন্তামূলক ব্যবস্থা গ্রহণ করতে হয় (Mention the standard safty recommedation to be flowed for removing refrigerant from system) ঃ

- ক্রেপ্রসর যেন অধিক গরম না হয় সেনিকে লক্ষ রাখতে হবে।
- ইমায়ক পুনঃলাভ এর সময় হতে গ্লোভস্ ও চোখের নিরাপন্তার জন্য সেফটি গগলস পরিধান করা উচিত।
- ৩। স্বরণ ও বরফ চূর্ণ ব্যবহার করা হলে ধৌত করতে হবে যাতে মরিচা না পড়ে।
- 8। দ্রাই আইস দ্বারা হিমায়ক পুনঃলাভ করার সময় হাতে হ্যাভ গ্লোভস পড়া উচিত।
- ইমায়ন চক্র উতপ্ত করে রিকোভারী করার সময় তাপ প্রয়োগে যাতে পুরানো টিউব চিদ্র না হয় সেদিক লক্ষ রাখতে হবে।
- সিলিভার যাতে অতিরিক্ত ভর্তি না হয় সেজন্য সিলিভার ওজন করতে হবে।
- ওরদ হিমায়ক রিকোভারী করার সময় তেল যাতে না আসে সেজন্য অয়েল সেপারেটর ব্যবহার করতে হবে ।

৯.৬ রেট্রোফিট কী? (State what is meant by retrofit) &

যে সকল অ্যাপ্লায়েন্দে রেফ্রিজারেন্ট হিসেবে CFC বা HCFC ব্যবহৃত হয় সে সকল অ্যাপ্লায়েন্স বিকল্প রেফ্রিজারেন্ট ব্যবহার করে চালানোর ব্যবস্থাকে রেট্রোফ্টি বলে। এক্ষেত্রে হিমায়কের সাথে কম্প্রেসর অয়েলসহ আনুষঙ্গিক যন্ত্রাংশ পরিবর্তন করতে হয়।

উদাহরণস্বরূপ বলা যায়, হিমায়ন যন্ত্রে R-12 হিমায়ক ব্যবহৃত হয়ে চালানো হত সে হিমায়ন যন্ত্রে হিমায়ক R-12 পরিবর্তে পরিবেশবান্ধব হিমায়ক 134a দ্বারা চালানো।

রেঞ্জিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

৯.৭ হিমায়ক R-12 এর পরিবর্তে হিমায়ক 134a চার্জ করার পদ্ধতি (Describe the retrift procediere of R-134a in R-12 system) ই

হিমায়ক-12 ব্যবহৃত রেফ্রিজারেশন যন্ধ্র বিশেষ ব্যবস্থায় হিমায়ক-134 চার্জ করা যায়। ছোট ইউনিট তেল পরিবর্তন করে বড় ইউনিট তেল ও এক্সপানশন ভাল পরিবর্তন করে গ্যাস চার্জ করা যায়। হিমায়ক-12 এর জন্য এক ধরনের তেল যা হিমায়ক-134a এর জন্য মোটেই উপযোগী নয়। হিমায়ক-12 ব্যবহৃত একটি রেফ্রিজারেটর-ফ্রিজারে হিমায়ক-134a চার্জ করার ধাপগুলো হল—

- ১। পুরানো কম্প্রেসর তেল সম্পূর্ণ রূপে অপসারণ করতে হবে।
- ২। কম্প্রেসর সমপরিমাণ কেসটাল আইসমেটিক (Castal icematic SW) ইস্টার অয়েল (Easter Oil) ভর্তি করতে হবে।
- ৩। কভেন্সার, কুলিং কয়েলসহ পুরো হিমায়ন চক্র নাইট্রোজেন গ্যাসের সাহায্যে ফ্রার্ল করতে হবে, যাতে তেল ও অন্যান্য ময়লা বের হয়ে যায়।
- ৪। কম্প্রেসরের লাইন, কন্ডেন্সার ও ইভাপোরেটরের সাথে ওয়েন্ডিং করতে হবে।
- ইউনিট বায়শুন্য করে পরিমাণমত হিমায়ক-134a চার্জ করতে হবে।
- ৬। ইউনিট চালাতে হলে।
- ৭। প্রায় এক ঘণ্টা চালানোর পর গ্যাস ছেডে দিতে হবে।
- ৮। কম্প্রেসরের তেল ফেলে দিতে হবে।
- ৯। নতুন তেল (সমপরিমাণ) কম্প্রেসরে দিতে হবে।
- ১০। লাইন সংযোগ করে বায়ুশুন্য করতে হবে।
- ১১ : নতুন গ্যাস পুনঃ চার্জ করতে হবে।

আধুনিক তেল চার্ক্সকরণ ঃ আধুনিক গ্যাসের সাথে আধুনিক তেল চার্জ করতে হয়। নতুন এ গ্যাসের সাথে পুরানো তেলের বিক্রিয়া ঘটে। তাই যখনই গ্যাসের পরিবর্তন করা হয়, তখনই তেলে পরিবর্তন করা হয়। তেল পরিবর্তনের ধাপগুলো হল—

- ১। সিল্ড বা হারমেটিক কম্প্রেসরের বেলায় এবং গ্যাস থাকলে তা পুনঃলাভ করতে হবে এবং কম্প্রেসর ইউনিট থেকে পৃথক করতে হবে। ওপেন টাইপ ইউনিটের বেলায় উভয় ভালঙ বন্ধ করতে হবে।
- তেল ড্রেন করতে হবে।
- ৩। নতুন তেল ভর্তি করতে হবে।
- 8। কম্প্রেসর চালু ও বন্ধ করতে হবে। এরূপ কয়েকবার করতে হবে।
- ে। তেল আবার ড্রেম করতে হবে।
- ৬। আবার নতুন তেল ডর্তি করতে হবে।
- ৭। সিন্ড কম্প্রেসর ইউনিটে লাগাতে হবে। ওপেন ইউনিটে ভালভ খুলতে হবে।

৯.৮ ড্রপ ইন রেফ্রিক্টারেন্ট (State what is meant by Drop-in refrigerant) 8

পরিবেশের জন্য ক্ষতিকর হিমায়ক সিস্টেম থেকে বাদ দিয়ে ওধু নতুন পরিবেশবান্ধব হিমায়ক চার্জ করার পদ্ধতিকে ড্রপ ইন রেফ্রিজারেন্ট রলে। এক্ষেত্রে কম্প্রেসর অয়েলসহ অন্যান্য যদ্রাংশ অপরিবর্তিত থাকবে।

৯.৯ হিমায়ক R-12 এর পরিবর্তে হাইড্রোকার্বন ব্লেড (HC-blend) চার্জ করার পদ্ধতির বর্ণনা (Describe the use of drop in Refrigerant (HC-blend in R-12 unit) 8

হিমায়ক 12 ব্যবহৃত রেফ্রিজারেশন যন্ত্রে HC-blend হিমায়ক চার্জ করা যায়। হাইড্রোকার্বন ব্লেন্ড (HC-blend) হিমায়ক R-290 প্রপেন এবং R 600a (আইসোবুটেন) এর ৫০% এবং ৫০% মিশ্রণ। এটি ব্যবহারে রেফ্রিজারেশন যন্ত্রে আপে যে পরিমাণ R-12 ছিল তার ৪০% ব্যবহার করে পর্যাপ্ত ঠাণ্ডা পাওয়া যায়।

- ইনা হিমায়ক HC-blend চার্জ করার আগে জেনে নিতে হবে হিমায়ন যয়ে R-12 রেফ্রিজারেন্ট কী পরিমাণ ছিল। যে পরিমাণ R-12 হিমায়ক সিস্টেম ছিল (নির্মাতা কর্তৃক দেয়া থাকে হিমায়কের পরিমাণ) তার ৪০% হিমায়ক চার্জ করলেই হবে।
- ২। হিমায়কের প্রেসর দেখে হিমায়ক চার্জ করা উচিত নয়। যদি করতে হয় তাহলে অভিজ্ঞ ব্যক্তির সাবে পরামার্শ করে নিতে হবে।
- ৩। হিমায়ক চার্জ করার পরে হিমায়ন যন্ত্র চালিয়ে দেখতে হবে পর্যাপ্ত ঠাণ্ডা হচ্ছে কি না। হিমায়কের পরিমাণ বেশি হলে সাকশন লাইন ঘামবে এবং বরফ জমতে পারে। আবার কম হলে সাকশন লাইন ঠাণ্ডা কম হবে।

রেফ্রন্ডারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

- ৪। ঠারা নিশ্চিত হওয়ার পর চার্জিং লাইনে ভালভ ভালভাবে পিঞ্চ অব প্লায়ার দিয়ে আটকাতে হবে। এরপর সোন্ডারিং করে দিতে হবে। কোন মতে গ্যাস ওয়েভিং বা ব্রেজিং করা যাবে না। আঠা দিয়ে আটকাতে পারলে আরো ভাল হয়। হাইছোকার্বন ব্লেভ গ্যাস আন্তনে স্থালে।
- ৫। এ হিমায়ক ব্যবহারের বড় সুবিধা হল কম্প্রেসর ওয়েল, স্টেনার ড্রায়ারসহ সিস্টেমের মেকানিক্যাল সাইডে কোন কিছু পরিবর্তন করতে হয় না।
- ৬। যেহেতু আগুন জ্বালাতে সাহায্য করে তাই ইলেকট্রিক্যাল সার্কিটের জন্য ওভারলোড প্রটেক্টের ও PTC রিলেসহ বাজারে প্যাকেট আকারে পাওয়া যায়। প্রযোজনমত পরিবর্তন করে ফেলতে হবে।

৯.১০ R-12 সিস্টেমে R-134a একং HC-blend হিমায়ক চার্জ করার তুলনামূলক পার্থক্য (Compare retrofifting of R-12 system with 134a and HC blend) 8

R-134a	হাইড্রোকার্বন ব্লেন্ড (HC-blend) ১। কম্প্রেসর অয়েল স্টেনার পরিবর্তন করতে হয় না।	
১। কম্প্রেসর অয়েল স্টেমার পরিবর্তম করতে হয়।		
২। প্রায় একই পরিমাণ হিমায়ক চার্জ করতে হয়।	২। আগের পরিমাণের ৪০% চার্জ করলেই হয়।	
৩। পুরো সিস্টেমকে নাইট্রোজেন গ্যাস দিয়ে ফ্লাশ করা বাধ্যতামূলক।	৩। নাইট্রোজেন গ্যাস চার্জ করা বাধ্যতামূলক নয়।	
 ইলেকট্রক্যাল সার্কিটের কোন কিছুর পরিবর্তন করার প্রয়োজন হয় না। 	8। যে সকল স্থানে স্পার্কিং হওয়ার সম্ভাবনা থাকে সে সকল কম্পোনেন্ট পরিবর্তন করা তাল।	

অনুশীলনী-৯

অতি সংক্ষিপ্ত প্রব্লোন্তর :

রেফ্রিজারেন্ট রিকোভারী বলতে কী বুঝ?
 অথবা, হিমায়ক রিকোভারী বলতে কী বোঝায়?

[বাকাশিবো-২০১৪]

[বাকাশিবো-২০১৫(পরি)]

ভিষয় CFC হিমায়ক ওজন স্তরের জন্য ক্ষতিকারক বিধায় হিমায়ন চক্রের সিএফসি এবং এইচসিএফসি (CFC and এটি HCFC) হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যত্ত সংগ্রহকরণকে হিমায়ক পুনঃলাভ বা রিকোভারী বলে। তি কোন হিমায়ন চক্র মেরামত, কম্প্রেসর পরিবর্তন বা অপসারণকালে হিমায়ক বাতাস না ছেড়ে সিলিভারে আহরণ করে ছি পুনরায় ব্যবহার করা যায়।

২। রেফ্রিজারেন্ট রিসাইকেলিং বলভে কী বুঝ? অথবা, রিসাইক্লিং বলভে কী বুঝায়? অথবা, হিমায়কপূর্ব চক্রায়ন বলভে কী বোঝায়?

[বাকাশিবো-২০১১, ২০১৪]

[বাকাশিবো-২০১১, ১৪]

[বাকাশিবো-২০০৯]

ভিত্তর তেল পৃথকীকরণ (Oil seperation), জলীয়কণা ও অল্লত্ব হ্রাসকরণ (Reducing Moisture acidity) এবং অন্যান্য অপদ্রব্য অপসারণের জন্য হিমায়ন আবর্তন চক্রে রেখেই যৃদি কোন হিমায়ক চক্রায়িত করা হয়, তাহলে তাকে হিমায়ক পুনঃচক্রায়ন (Refrigerant Recycling) বলা হয়।

। রেফ্রিজারেন্ট রিক্রেইম বলতে কী বুঝা। অথবা, হিমায়ক রিক্রেইম বলতে কী বুঝায়। অথবা, রিক্রেইম বলতে কী বুঝায়। অথবা, রিক্রেইম কী।

্ [বাকাশিবো-২০০৭, ২০১০(পরি)]]

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১৫(পরি)]

[বাকাশিবো-২০১৪]

[বাঞাশিবো-২০০৭, ১০, ২০১১(পরি)]

্রিষ্টর ট্রি কোন হিমায়ন চক্রে ব্যবহাত হিমায়ক পুনঃলাডের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়, তাহলে তাকে রেফ্রিজারেন্ট রিক্রেইম বলা হয়।

8। হিমায়ক পুনঃলাভের দৃটি পদ্ধভির মাম দিব।

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৮, ২০১১ (পরি)]

🕭তর 🜓 ১। লিকুইড হিমায়ক পুনঃলাভ পদ্ধতি। ২। বাম্পীয় হিমায়ক পুনঃলাভ পদ্ধতি।

ফুজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম

৫। রেট্রোফিটিং বলতে কী বুঝা

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৮, ২০১১ (পরি)]

ঠিছরা বি সকল অ্যাপ্লায়েন্সে রেফ্রিজারেন্ট হিসেবে CFC বা HCFC ব্যবহৃত হয় সে সকল অ্যাপ্লায়েন্স বিকল্প রেফ্রিজারেন্ট ব্যবহার করে চালানোর ব্যবস্থাকে রেট্রোফিট বলে। এক্ষেত্রে হিমায়কের সাথে কম্প্রেসর অয়েলসহ আনুষঙ্গিক যন্ত্রাংশ পরিবর্তন করতে হয়।

উদাহরণস্ক্রপ বলা যায়, হিমায়ন যন্ত্রে R-12 হিমায়ক ব্যবহৃত হয়ে চালানো হঙ সে হিমায়ন যন্ত্রে হিমায়ক R-12 পরিবর্তে পরিবেশবান্ধব হিমায়ক 134a দ্বারা চালানো।

৬। দ্রপ ইন রেফ্রিজারেন্ট বলতে কী বুরা?

[বাকাশিবো-২০০৯, ২০১২ (পরি)]

্ঠিতর ব্রী পরিবেশের জন্য ক্ষতিকর হিমায়ক সিস্টেম থেকে বাদ দিয়ে ওধু নতুন পরিবেশবান্ধব হিমায়ক চার্জ করার পদ্ধতিকে দ্রপ ইন রেফ্রিজারেন্ট বলে। এক্ষেত্রে কম্প্রেসর অয়েলসহ অন্যান্য যন্ত্রাংশ অপরিবর্তিত থাকবে।

৭। দ্রাই আইসের সংজ্ঞাদাও।

[বাকাশিবো-২০১২ (পরি)]

অথবা, ড্রাই আইস কাকে বদে?

[বাকাশিবো-২০০৪,২০১০]

অথবা, দ্রাই আইস বলতে কী বোঝায়?

[বাকাশিবো-২০১৫(পরি)]

্ঠিন্তর 🛭 কার্বন ডাই-অক্সাইডের কঠিন অবস্থাকে ড্রাই আইস বলে।

🕥 সংक्षिष्ठ श्रद्धाष्ठतः

১। রিক্রেইম ও রিসাইকেলিং এর মধ্যে পার্ধক্য লিখ।

[বাকাশিবো-২০১১]

ঠিতর বিক্রেইম রেফ্রিজারেন্ট (Reclaim Refrigerant) ঃ কোন হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঃলাভের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়, তাহলে তাকে রেফ্রিজারেন্ট রিক্রেইম বলা হয়। ব্যবহৃত হিমায়ক পরিশোধন ও প্রক্রিয়াজাত করে নতুন হিমায়কের মত ব্যবহার করা যায়। নতুন হিমায়ক উৎপাদনের উপর যুক্তরাট্রে খাজনা বা ট্যাক্স দিতে হয় কিন্তু ব্যবহৃত হিমায়ক প্রক্রিয়াজাত করার জন্য কোন খাজনা দিতে হয় না। হিমায়ক উৎপাদনকারী প্রতিটি সংস্থায় রিক্রেইম করার ব্যবস্থা আছে।

রিক্লেইম ও রিসাইকেলিং এর মধ্যে পার্থক্য নিমুরূপ-

	রিক্রেইম রেফ্রিজারেশন	রিসাইকেশিং রেফ্রিজারেশন	
۱ د	হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঃলাভের পর পরিশোধন করা হয়।	১। আবর্তন চক্রে হিমায়ন রেখেই হিমায়ন পরিশোধন করা হয়।	
२।	ফিল্টার জ্রায়ার ব্যবহার করা হয় না ।	২। ফিল্টার দ্রায়ার ব্যবহার করা হয়।	
9	। নতুন হিমায়কের মতো ব্যবহার করা যায়। ৩। হিমায়ক ফিল্টার ড্রায়ারে ফিল্টার করে ব্যবহা হয়।		
8	ইউনিট চালনা করার জন্য রিসিভার ভাল্ভ খোলার প্রয়োজন হয় না।	৪। রিসিভার ভালভ্ বুলে রেখেই ইউনিট চালাতে হয়।	

২। R-12 ব্যবহৃত চক্রে R-134a এবং HC-blend হিমায়ক চার্জ করার তুলনামূলক পার্থক্য শিখ।

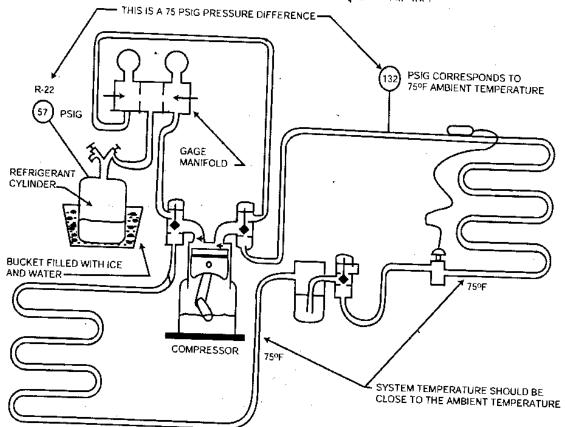
্ঠিছর 🗳 R-12 ব্যবহৃত চক্রে R-134a এবং HC-blend হিমায়ক চার্জ করার তুলনামূলক পার্থক্য ঃ

R-134a		হাইড্রোকার্বন ব্রেন্ড (HC-blend)	
21	কম্প্রেসর অয়েল স্টেনার পরিবর্তন করতে হয়।	۱ د	কম্প্রেসর অয়েল স্টেনার পরিবর্তন করতে হয় না।
२।	প্রায় একই পরিমাণ হিমায়ক চার্জ করতে হয়।	२।	আগের পরিমাণের ৪০% চার্জ করলেই হয়।
७।	পুরো সিস্টেমকে নাইট্রোজেন গ্যাস দিয়ে ফ্লাশ করা বাধ্যতামূলক।	ও।	নাইট্রোজেন গ্যাস চার্জ করা বাধ্যতামূলক নয়।
8 1	ইলেকট্রক্যাল সার্কিটের কোন কিছুর পরিবর্তন করার প্রয়োজন হয় না।	8 1	যে সকল স্থানে স্পার্কিং হওয়ার সম্ভাবনা থাকে সে সকল কম্পোনেন্ট পরিবর্তন করা ভাল।

আধুনিক তেল চার্জকরণ পদ্ধতি লিখ।

[বাকাশিবো-২০১০ (পরি)]

(ঠিতর 🕝) আধুনিক গ্যাসের সাথে আধুনিক তেল চার্জ করতে হয়। নতুন এ গ্যাসের সাথে পুরানো তেলেরবিক্রিয়া ঘটে। তাই যখনই গ্যাসের পরিবর্তন করা হয়, তখনই তেলে পরিবর্তন করা হয়। তেল পরিবর্তনের ধাপগুলো হল—


- ১। সিল্ড বা হারমেটিক কম্প্রেসরের বেলায় এবং গ্যাস থাকলে তা পুনঃলাভ করতে হবে এবং কম্প্রেসর ইউনিট থেকে পৃথক করতে হবে। ওপেন টাইপ ইউনিটের বেলায় উভয় ভালভ বন্ধ করতে হবে।
- ২। তেল ড্রেন করতে হবে।
- ৩। নতুন তেল ডর্তি করতে হবে।
- 8। কম্প্রেসর চালু ও বন্ধ করতে হবে। এরূপ কয়েকবার করতে হবে।
- ৫। তেল আবার ড্রেন করতে হবে।
- ৬। আবার নতুন তেল ডর্তি করতে হবে।
- ৭। সিল্ড কম্প্রেসর ইউনিটে লাগাতে হবে। ওপেন ইউনিটে ভালভ খুলতে হবে।
- কৃত্তিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর। 8 | [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১০ (পরি), ২০১২, ২০১৪] অথবা, কৃত্রিম উপায়ে তৃষার তৈরির পদ্ধতি বর্ণনা কর। [বাকাশিবো-২০০৪, ২০১০]

অথবা, বরফের মাধ্যমে হিমারক পুনঃলাভ পদ্ধতি চিত্রসহ লেব।

[বাকাশিবো-২০০৮]

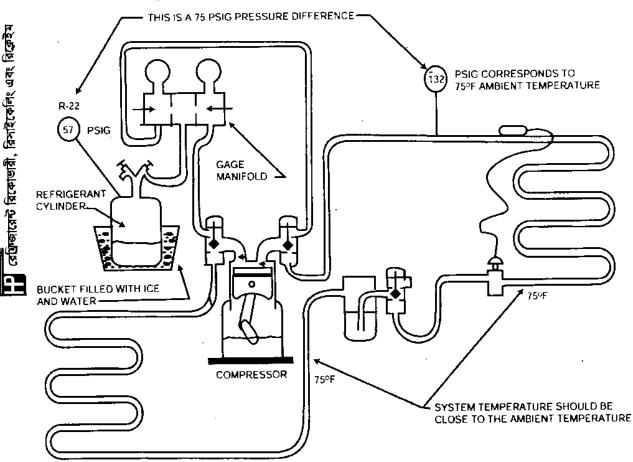
(উন্তর 🗗) বরফের মাধ্যমে হিমারক পুনঃলাভ ঃ

ব্রকোভারী সিলিভার বরফের মাধ্যমে ঠাণ্ডা করে ইউনিট ও সিলিগুরের মধ্যে চাপে পার্ষক্য সৃষ্টি হয়। ফলে হিমায়কের কৃত্রিম প্রবাহ সৃষ্টি হয়। প্রথমে বাষ্পীয় হিমায়ক সিলিন্ডারে আসতে থাকে এবং পরে ইউনিটের তরল হিমায়ক বাষ্পীভূত হয়ে প্রবাহিত হয়। ইউনিটে তাপ এবং সিলিন্ডার অধিক ঠাণ্ডা করে এ কাজ ত্বান্থিত করা যায়। রফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং

রিকোভারী সিলিগুর বরফের সাহায্যে ঠাগু করে হিমায়ক পুনঃলাড

৫। পুনঃলাও এবং পুনঃচক্রায়নের ব্যাখ্যা দাও।

[বাকাশিবো-২০০৭, ২০১০, ২০১২]


ঠিছর পুনালাভ: CFC হিমায়ক ওজন স্তরের জন্য ক্ষতিকারক বিধায় হিমায়ন চক্রের সিএফসি এবং এইচসিএফসি (CFC and HCFC) হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যর সংগ্রহকরণকে হিমায়ক পুনঞ্জাভ বা বিকোভারী বলে। কোন হিমায়ন চক্র মেরামত, কম্প্রেসর পরিবর্তন বা অপসারণকালে হিমায়ক বাতাস না হেড়ে সিলিভারে আহরণ করে পুনরায় ব্যবহার করা যায়।

পুনয়চক্রায়নে ঃ তেল পৃথকীকরণ (Oil seperation), জ্বলীয়কণা ও অন্নত্ত্রোসকরণ (Reducing Moisture acidity) এবং অন্যান্য অপদ্রব্য অপসারণের জন্য হিমায়ন আবর্তন চক্রে রেখেই যদি কোন হিমায়ক চক্রায়িত করা হয়, তাহলৈ তাকে হিমায়ক পুনঃচক্রায়ন (Refrigerant Recycling) বলা হয়।

৬। ব্ৰেফ্রিক্সারেন্টকে কীভাবে বিকোভাবি করা যার চিত্রসহ লেখ।

[বাকাশিবো-২০১২ (পরি)]

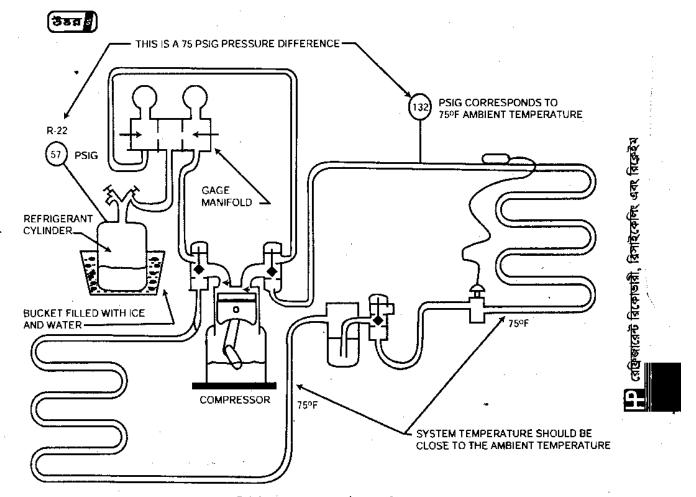
ঠিছর বিকোডারী সিলিভার বরকের মাধ্যমে ঠালা করে ইউনিট ও সিলিভারের মধ্যে চাপে পার্থক্য সৃষ্টি হয়। ফলে হিমায়কের কৃত্রিম প্রবাহ সৃষ্টি হয়। প্রথমে বাস্পীয় হিমায়ক সিলিভারে আসতে থাকে এবং পরে ইউনিটের তরল হিমায়ক বাস্পীভৃত হয়ে প্রবাহিত হয়। ইউনিটে তাপ এবং সিলিভার অধিক ঠালা করে এ কাল্প ত্রাম্বিত করা যায়। এ কাল্প অনেকভাবে করা যায়, তবে বড় প্লান্টে প্রয়োগ করা যায় এমন একটি ব্যবস্থা ৯.৫ নং চিত্রে দেখানো হল।

ব্রিকোভারী সিলিভার বরফের সাহাযো ঠালা করে হিমারক প্রঃলাভ

৭। হিমারক রিকোভারী করার প্রয়োজনীরতা লেখ।

বিকশিবো-২০১১

্ঠিতর । হিমায়ক পুনঃপাভ (Recovery) করার প্রয়োজনীয়তা অপরিসীম। করণ CFC এবং ACFC হিমায়ক ODP বৃদ্ধি করে এবং ইহা গ্রিনহাউস নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যত্র সংগ্রহকরণ প্রয়োজন।


৮। দ্রাই আইস তৈরির কৌশল করি।

[বাকাশিবো-২০০৯]

ক্রিছর বাই আইস তৈরির কৌশল অনেকটা বাস্প সংকোচন পদ্ধতির মত। ইভাপোরেটরে এক্সপানশন ভালভের মাধ্যমে তরল হিমায়কের চাপ হাস করা হয়। এতে আংশিক তরল বাস্পীভূত হয়। বাকি তরল সুপ্ততাপ হারিয়ে কঠিন অবস্থয় রূপান্ত রিত হয়। যে পরিমাণ গ্যাস চক্রের অভ্যন্তরে কঠিন অবস্থায় পরিণত হ্রয় সে পরিমাণ গ্যাস হিমায়ন চক্রে পূরণ করার দরকার হয়। সেজন্য একটি সিলিভার কম্প্রেসর সাকশন লাইনের সাথে গ্যাস পূরণের সংযোগ থাকে। এটাকে কার্বন ডাই-অক্সাইড মেক আপ কানেকশন বলে।

১। একটি হিমায়ক রিকোভারী পদ্ধতি অঙ্কন কর।

[বাকাশিবো-২০০৪]

চিত্র ঃ রিকোভারী সিলিধার বরফের সাহায্যে ঠাতা করে হিমায়ক পুনঃলাভ

১০ ব কোন একটি হিমায়ক রিক্রেইম করা যায় না এবং কেন?

[বাকাশিবো-২০০৪]

ক্রিক্রন্থ রিক্রেইম রেফ্রিজারেন্ট (Reclaim Refrigerant) ই কোন হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঃলাভের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়, তাহলে তাকে রেফ্রিজারেন্ট রিক্রেই্ম বলা হয়। ব্যবহৃত হিমায়ক পরিশোধন ও প্রক্রিয়াজাত করে নতুন হিমায়কের মত ব্যবহার করা যায়। নতুন হিমায়ক উৎপাদনের উপর যুক্তরাট্রে খাজনা বা ট্যাক্স দিতে হয় কিন্তু ব্যবহৃত হিমায়ক প্রক্রিয়াজাত করার জন্য কোন খাজনা দিতে হয় না। হিমায়ক উৎপাদনকারী প্রতিটি সংস্থায় রিক্রেইম করার ব্যবস্থা আছে।

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং–২০

রিকোভারী ও রিক্রেইম এর মধ্যে পার্থক্য দিখ। অথবা, রিকোভারী ও রিক্রেইম এর মধ্যে দু'টি পার্থক্য শিখ। অথবা, রিকোভারী ও রিফ্রেইম এর মধ্যে ১ টি পার্থক্য শিখ।

[বাকাশিবো-২০০৩, ২০১৪] [বাকাশিবো-২০০৬, ০৭, ১২] [বাকাশিবো-২০০৫]

🕃 ভর 🖪 রিকোভারী ও রিক্রেইম এর মধ্যে পার্থক্য ঃ

রিক্রেইম রেফ্রিজারেন্ট *		রিকোভারী রেফ্রিজারেন্ট	
3 I	কোন হিমায়ন চক্রে ব্যবহৃত হিমায়ক পুনঞ্চাভের পর যদি পরিশোধিত ও প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়, তাহলে তাকে রিফ্রিজারেন্ট রিফ্রেইম বলা হয়।	১। হিমায়ন চক্রের CFC এবং HCFC হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যত্র সংগ্রহ করাকে হিমায়ক পুনঃ লাভ বা রিকোভারী বলে।	
21	ব্যবহৃত হিমায়ক পরিশোধন ও প্রক্রিয়া জাত করে।	২। পরিশোধন বা প্রক্রিয়াজাতকরণ করা হয় না।	
91	নতুন হিমায়কের মতো ব্যবহার করা যায়।	৩। নতুন হিমায়কের মডো ব্যবহার করা যায় না।	
81	কোন হিমায়ক চক্র মেরামত, কম্প্রেসর পরিবর্তন বা অপসারণ করে হিমায়ক বাতাস না ছেড়ে সিলিভারে আহরণ করে পুনবার ব্যবহার করা যায় না।	 ৪। কোন হিমায়ক চক্র মেরামত, কম্প্রেসর পরিবর্তন বা অপসারণকালে হিমায়ক বাতাস না ছেড়ে সিলিভারে আহরণ করে পুনরায় ব্যবহার করা যায়। 	

> त्रष्ठवासूनक श्रश्नावि :

লিকুইড হিমায়ক পুনঃলাভ (রিকোভারী) পদ্ধতি বর্ণনা কর।

(ঠছর সংক্রেত 🖁) অনুচেছদ ৯.৩ নং দুটব্য।

ভ্যাপার হিমায়ক পুনঃলাভ (রিকোভারী) পদ্ধতি বর্ণনা কর।

(উন্তর সম্প্রেকত 🗗 অনুচেছদ ৯.৪ নং দ্রপ্টব্য ।

সিস্টেম থেকে হিমায়ক বের করার সময় কী কী নিরাপত্তামূলক ব্যবস্থা এহণ করতে হয় লিখ।

ঠিষ্টর সম্পক্তেত 🖁 অনুচেছদ ৯.৫ নং দ্রষ্টব্য ।

R-12 ব্যবহৃত চক্রে R-134a চার্জ করার পদ্ধতি বর্ণনা কর। অথবা, একটি R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর।

[বাকাশিবো-২০০৩,*২০০৪, ২০০৫, ২০০৬, ২০০৭, ২০০৮]

অধবা, R-12 সিস্টেমকে R-1342 সিস্টেম কীভাবে রূপান্তর করা যায়। ধারাবাহিকভাবে লিখ। [বাকাশিবো-২০০৪, ০৫]

ঠিষর সথকেত 😝 অনুচেছদ ৯.৭ নং দ্রষ্টব্য।

R-12 ব্যবহৃত চক্রে HC-blend চার্জ করার পদ্ধতি বর্ণনা কর।

[বাকাশিবো-২০১২ (পরি)]

অথবা, হিমায়ক R-12 এর পরিবর্তে হাইড্রোকার্বন ব্লেড (HC- Blend) চার্জ করার পদ্ধতি বর্ণনা কর।

[বাকাশিবো-২০১২ (পরি), ২০১৪]

অথবা, হিমায়ক আর-১২ এর পরিবর্তে হাইছ্রোকার্বন ক্লেড চার্জ করার পদ্ধতি বর্ণনা কর।

[বাকাশিবো-২০১৫(পরি)]

(উন্তর সম্প্রেক্ত 📴 অনুচেছ্দ ৯.৯ নং দ্রষ্টব্য 🕫

্উনিট হতে হিমায়ক রিকোভারি করার পদ্ধতি চিত্রের সাহায্যে বর্ণনা কর।

[বাকাশিবো-২০০৩, ০৫, ০৬, ০৯, ১০ (পরি), ১১ (পরি), ১২, ১৪]

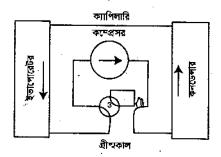
অথবা, বরফের সাহায্যে কীভাবে হিমায়ক পুনঃলাভ করা যায়, তা সচিত্র বর্ণনা কর। অথবা, একটি হিমায়ন চক্রের হিমায়ক রিকোভারি চিত্র সহকারে বর্ণনা কর।

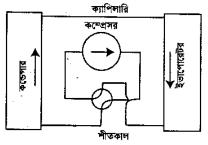
[বাকাশিবো-২০০৪] [বাকাশিবো-২০০৯]

অথবা, বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ বর্ণনা কর।

[বাকাশিবো-২০১৫(পরি)]

(উন্নয় সম্প্রেড 💅 অনুচেছ্দ ৯.৪ নং দ্রষ্টব্য ।

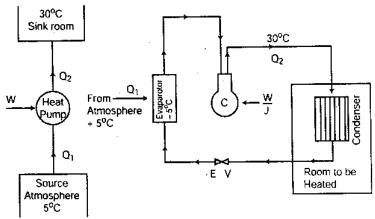

<u>রেফ্রিজারেন্ট রিকোভারী, রিসাইকেলিং এবং রিক্রেইম</u>



হিট পাম্প (Heat Pump)

১০.০ ভূমিকা (Introduction) 8

তাপ সাধারণভাবে উচ্চ তাপমাত্রা থেকে নিম্ন তাপমাত্রার দিকে প্রবাহিত হয়। হিমায়ন চক্র ব্যবহার করে নিম্ন তাপমাত্রা থেকে তাপ গ্রহণ করে উচ্চ তাপমাত্রায় স্থানান্তর করা যায়। এজন্য যে কোন হিমায়ন চক্রকেই হিট পাম্প বলা যায়। কিন্তু এক্ষেত্রে হিট পাম্প বলতে হিমায়ন চক্রকে ব্যবহার করে কক্ষণরম করার পদ্ধতিকে বুঝানো হয়েছে। যখন কোন হিমায়ন চক্র গ্রীম্মকালে গরম স্থান ঠাতা করার পাশাপাশি শীতকালে ঠাতা স্থান গরম করার কাজে ব্যবহৃত হয়, তখন তাকে হিট পাম্প বলা হয়। হিমায়ন চক্রে হিমায়ক প্রবাহের দিক পরিবর্তন করার ব্যবহা (চেঞ্জ অভার সুইচ) থাকলে কন্তেশারকে ইভাপোরেটর এবং ইভাপোরেটরকে কন্তেশারে রূপান্তর করা সম্ভব। এতে যে যন্ত্র কক্ষণীতল করার কাজে ব্যবহৃত হত ক্য দিয়ে কক্ষণরম করা সম্ভব হয়। এ ধরনের ব্যবহা সম্বলিত যন্ত্রকে হিট পাম্প বলা হয়। সুতরাং হিট পাম্প একটি হিমায়ন যন্ত্র বা নিম্ন তাপমাত্রা থেকে উচ্চ তাপমাত্রায় তাপ স্থানান্তর করে কক্ষে উচ্চ তাপমাত্রা রাখার কাজে ব্যবহৃত হয়।



চিত্ৰ ঃ ১০.১ হিট পাম্প (ক) কুন্সিং মুড (খ) হিটিং মুড

হিট পাম্পে চারপথ বিশিষ্ট একটি ভাল্ড (Four way valve) ব্যবহার করে হিমায়ন চক্রে হিমায়কের প্রবাহের দিক পরিবর্তন করা হয়। চারপথ বিশিষ্ট ভাল্ডটি রিভার্সিং ভাল্ড নামে পরিচিত। প্রচলিত হিমায়ন চক্রকে হিট পাম্প হিসেবে ব্যবহার করতে হলে কী ধরনের ব্যবহাপনা থাকতে হবে তা ১০.১ এবং ১০.২ চিত্রে দেখানো হয়েছে। ১০.২ চিত্রের হিট পাম্প চক্রে ক্যাপিলারি টিউব ব্যবহার করা হয়েছে এবং দৃটি ড্রায়ার ব্যবহার করা হয়েছে। ড্রায়ার কার্যকরী রাখার জন্য হিমায়কের প্রবাহ একটি নির্দিষ্ট দিক হতে হয়। তাই দৃটি ড্রায়ার বিপরীতমুখী অবস্থায় ব্যবহারে ফলে হিমায়কের প্রবাহের দিক পরিবর্তন করলে একটি ড্রায়ার ক্রিয়াশীল থাকবে। হিটিং হিমায়কের প্রবাহের দিক পরিবর্তন করলে একটি জ্বায়ার ক্রিয়াশীল থাকবে। হিটিং হিমায়কের প্রবাহের দিক পরিবর্তন করলে একটি ড্রায়ার ক্রিয়াশীল থাকবে। হিটিং না হয় সেজন্য এ ধরনের ব্যবস্থাপন্নায় সাকশন লাইনে অ্যাকুমুলেটর সংযুক্ত থাকে।

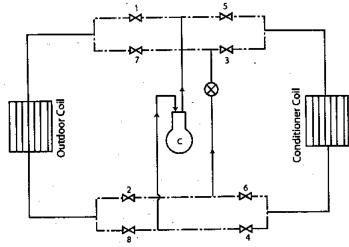
১০.১ বিট পাম্প (State what is meant by heat pump) 8

যে রেফ্রিজারেশন ইউনিট নিমু তাপমাত্রা হতে তাপ গ্রহণ করে এবং তা উচ্চ তাপমাত্রায় পরিত্যাগ করে, তাকে হিট পাম্প বলে। অন্যভাবে বলা যায়, যে রেফ্রিজারেশন সাইকেলের কন্ডেন্সারের হিটকে ব্যবহার করলে তখন তাকে হিট পাম্প বলে।

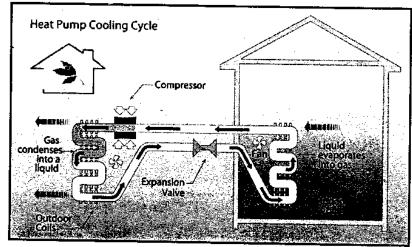
চিত্র ঃ ১০.২ হিট পাম্প সাইকেন

১০.২ বিট পাম্পের প্রকারভেদ (Mention the types of heat pump) 8

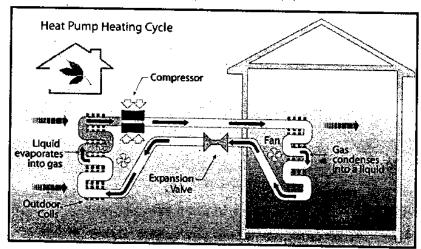
তাপ সংগ্রহের উৎস ও প্রবাহের উপর ভিত্তি করে ৫ ভাগে ভাগ করা যায়।


- 🕽। এয়ার টু এয়ার হিট পাম্প (Air to air heat pump)
- ২ 🕴 এয়ার টু ওয়াটার হিট পাম্প (Air to water heat pump)
- ত। ওয়াটার টু এয়ার হিট পাম্প (Water to air heat pump)
- 8। ওয়াটার টু ওয়াটার হিট পাম্প (Water to water heat pump)
- ৫। এয়ার টু লিকুইড হিট পাম্প (Air to liquid heat pump)

১০.৩ বিভিন্ন প্রকার হিট পাস্পের বর্ণনা (Describe the operation of the different types of heat pump) 8


১০.৩.১ এয়ার টু এয়ার বিট পাস্প (Air to air heat pump) 8

এ পদ্ধতিতে বাতাস প্রবাহের দিকের কোন পরিবর্তন হয় না। তথুমাত্র হিমায়ক প্রবাহের দিক পরিবর্তন হয়। গ্রীষ্মকালে বায়ুর তাপমাত্রা কমানোর জন্য হিমায়ক ইভাপোরেটরের মাধ্যমে কক্ষের বাতাস হতে তাপ সংগ্রহ করে এবং শীতকালে কভেপারের মাধ্যমে রুমে তাপ ছড়িয়ে দেয়।



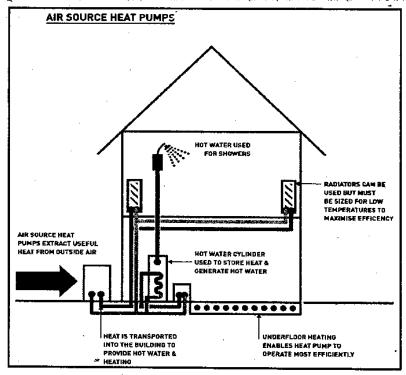
চিত্র ৪ ১০.৩ এয়ার টু এয়ার হিট পাস্পের কুলিং হিটিং চক্র

চিত্র ঃ ১০.৪ এয়ার টু এয়ার হিট পাম্পের হিটিং চক্র

চিত্র ঃ ১০.৫ এয়ার টু এয়ার হিট পাম্পের কুদিং চক্র

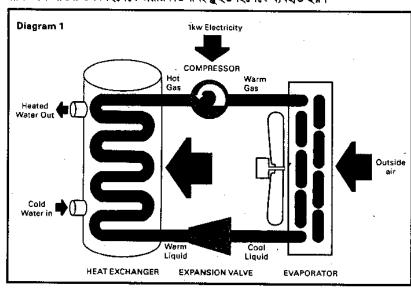
১০.৩.২ ওয়াটার টু এয়ার হিট পাষ্প (Water to air heat pump) 8

এ পদ্ধতিতে সমুদ্রের পানি হতে তাপ সংগ্রহ করে এবং Out door coil এর ভিতর দিয়ে যাওয়ার সময় তাপ পরিত্যাগ করে।



চিত্র ঃ ১০.৬ ওয়াটার টু এয়ার হিট পাস্পের চক্র

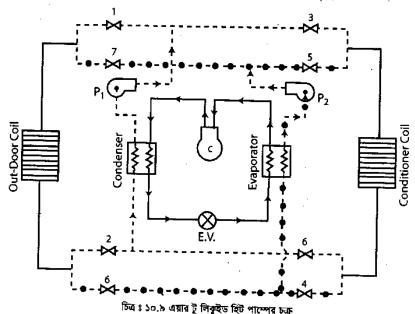
১০.৩.৩ এয়ার টু ওয়াটার হিট পাম্প (Air to water heat pump) 8


এ পদ্ধতিতে বায়ুমণ্ডলের বাতাস হতে তাপ সংগ্রহ করে পানিকে উত্তপ্ত করা হয় এবং পানি কন্তেন্সার হতে তাপ শোষণ করে গরম হয়।

চিত্র ঃ ১০.৭ এয়ার টু গুয়াটার হিট পাম্পের চক্র

১০.৩.৪ ওয়াটার টু ওয়াটার হিট পাম্প (Water to water heat pump) ঃ

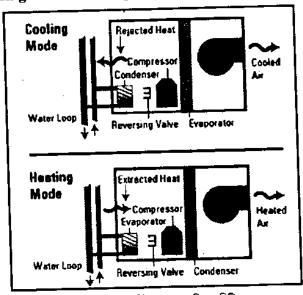
এ পদ্ধতিতে পানি তাপ শক্তির উৎস হিসেবে এয়ারকন্তিশনিং ফ্রুইড হিসেবে ব্যবহৃত হয়।



চিত্র ঃ ১০.৮ প্রয়াটার টু ওয়াটার হিট পাস্পের চক্র

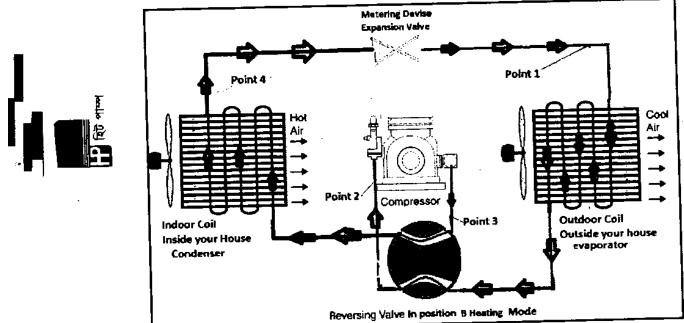
১০.৩.৫ এয়ার টু লিকুইড হিট পাম্প (Air to liquid heat pump) 8

এ পদ্ধতিতে বাতাস হতে তাপ সংগ্রহ করা হয় এবং পানি বা শিকৃইড এ তাপ বাতাসে Relise পরিবর্তন করা হয়। হিটিং সাইকেলে পার্শ্বন্থ বায়ু হতে তাপ সংগ্রহ করে এবং কক্ষে পরিত্যাগ করে। কক্ষের ভিতরের কয়েলকে এ সময় রিভার্সিং ভাশ্ভ দ্বারা কন্ডেন্সার এবং বাইরের কয়েলকে ইভাপোরেটরে পরিণত করা হয়। আবার কুলিং সাইকেলে কক্ষের মধ্যেও তাপ বাইরের বায়ুতে পরিত্যাগ করা হয়। রিভার্স ভাশ্ভ দ্বারা এ সময় কক্ষের কয়েলকে কন্ডেন্সারে পরিণত করা হয়।



১০.৪ Geothermal হিট পাম্প, Air source হিট পাম্প এবং Solar হিট পাম্প এর মধ্যে পার্থক্য (Distinguish between geothermal heat pumps, Air source heat pumps & solar heat pumps) 8

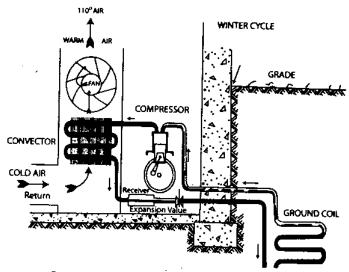
Geothermal হিট পাম্প, Air source হিট পাম্প এবং Solar হিট পাম্প এর মধ্যে পার্থক্য নিমুরূপ-


Geothermal হিট পাষ্প	Air source হিট পাষ্প	ত। নমুগ্রপ— Solar হিট পাম্প	
 Geothermal heat পাম্প সের্ব হিটির এবং কুলিং এর জন্য ব্যব করা হয়। 	ার রম্প হিটিং এবং কুলিং এর জন্য ব্যবহার করা হয়।	বর্তমানে সেক্টাল এবং রুম হিটিং	
2. এই পাম্পের দক্ষতা তুলনামূলক কর	বেশি ৷	·	
 গ্রাউন্ত সোর্স (Ground Source) পাম্প ভৃপৃষ্ট থেকে তাপ গ্রহণ আ ভৃপৃষ্ঠ তাপ ত্যাগ করে। 	টে 3. এয়ার সোর্স (Air source) হিট পাম্প বা বাহির থেকে বিন্ডিং এর ভিতরে স্থানান্তর করে।		
4. এই পাম্পের দক্ষতা তুলনামূলক বেলি	। 4. এই পাম্পের তাপিয় দক্ষতা বেশি।		
 ভেরিয়েবল স্পিড ক্রেপ্রসর ব্যক্ করা যায়। 			
6. খরচ বেশি।	6. তুলনামূলক খরচ ক ম ়		

১০.৫ হিট পাম্প বিভার্সিং ভালভের কুলিং ও হিটিং মোডসহ কার্যাবলির বর্ণনা (Describe the operation of the heat pump reversing valve is heating and cooling mode) ?

চিত্র ঃ ১০.১০ হিট পাস্পের কুলিং ও হিটিং চক্র

চিত্রে প্রকাশিত Reversing ভালভের সাহায্যে কুলিং ও হিটিং সাইকেল হিট পাস্প তৈরি করা হয়। উভয় সাইকেলের জন্য একটি পদ্ধতি ব্যবহৃত হয়। কিন্তু রেফ্রিজারেন্ট শ্রমণ বা প্রবাহ কুলিং ও হিটিং এর জন্য বিপরীতভাবে পরিবর্তিত হয়। হস্তচালিত বা পার্মোস্ট্যাটিক ভাল্ভ দ্বারা সাইকেলকে পরিবর্তন করা হয়। হিটিং সাইকেল পার্মন্থ বায়ু হতে তাপ সংগ্রহ করে এবং কক্ষে পরিত্যাগ করে। কক্ষের মধ্যের কয়েলকে এ সময় রিভার্সিং ভাল্ভ দ্বারা কন্ডেশার এবং বাইরের কয়েলকে ইভাপোরেটরে পরিণত করা হয়। আবার কুলিং সাইকেলে কক্ষের মধ্যের তাপ বাইরের বায়ুতে পরিত্যাগ করা হয়। রিভার্সিং ভাল্ভ দ্বারা এ সময় কক্ষের কয়েলকে ইভাপোরেটর ও বাইরের কয়েলকে কডেশারে পরিণত করা হয়।



চিত্র ৪ ১০.১১ হিট পাম্পের কুলিং অবস্থা

১০.৬ হিট পাম্পের ব্যবহার (Application of heat pump) 8

- ১। বাৎসরিক এয়ারকন্তিশনার হিসেবে (Year round A.C) অর্থাৎ শীতকালে গরম এবং গ্রীম্মকালে ঠাণ্ডা করার কাজে।
- ২ ৷ ইভাপোরেটর ডি-ফ্রস্টিং এর কাজে ।
- ত। যে সকল শিল্পে পণ্য প্রক্রিয়াজ্ঞাত বা উৎপাদনে ঠাণা ও গরম উভয়ই প্রয়োজন হয় সেক্ষেত্রে। যেমন

 (ক) পানি পরিশোধনের কাজে।
 (ব) ফলের রস, দুধ এবং চিনির রস ঘন করার কাজে।
- 8। সামৃদ্রিক লবণাক্ত পানি পরিশোধনের কাজে।
- त७ वैवर तामाग्रनिक भमार्च घन कतात कारक।
- ৬। খাওয়্যুর লবণ (Taste salt) ও পাউডার দৃধ তৈরির কারখানায়।

চিত্র ঃ ১০.১২ মাউভ কয়েদ সম্পাত হিট পাশেপর হিটিং সাইকেদ

১০.৭ হিট পাম্পের ব্যবহার ক্ষেত্র (Mention the industrial applications of heat pump) \$

- ১। বাৎসরিক এয়ারকভিশনার হিসেবে (Year round A.C) জর্ঘাৎ শীতকালে গরম এবং গ্রীম্মকালে ঠাণ্ডা করার কাঞ্জে।
- ২ ইতাপোরেটর ডি-ফ্রস্টিং এর কাঞ্জে
- ত। যে সকল শিল্পে পণ্য প্রক্রিয়াজাত বা উৎপাদন ঠাতা ও গরম উভয়ই প্রয়োজন হয় সেক্ষেত্রে। যেমন-
 - (क) পানি পরিশোধনের কাঞ্জে।
 - (व) ফলের রস, দুধ এবং চিনির রস ঘন করার কাজে।
- 8। সামুদ্রিক লবণাক্ত পানি পরিশোধনের কাজে।
- ে। রঙ এবং রাসায়নিক পদার্থ ঘন করার কাজে।
- ৬। খাওয়ার লবদ ও পাউডার দৃধ তৈরির কারখানায়।

হিট পাম্পের সূবিধা ও অসুবিধা (Advantage and dis-advantages of heat pump) \$

হিট পাম্পের সুবিধা (Adventage of heat pump) ঃ

- 🕽 । হাই গ্রেড এনার্জি ব্যবহার করে একটি মাত্র আঁটসাঁট যন্ত্রের শীত ও গ্রীম উভয় ঋতুতে আরামন 🚁 এপমাত্রা পাওয়া সম্ভব ছয়।
- ২। প্রচলিত হিমায়ন চক্রকে হিট পাম্প চক্রে ব্লপান্তর করলে COP বেড়ে যায়।
- ৩। হিটিং সাইকেলে কম্প্রেসরে প্রয়োগকৃত শক্তির চেয়ে অনেক বেশি তাপ শক্তি (প্রয়োগকৃত শক্তি × COP) কক্ষে সরবরাহ করে।
- 8। অতি শীতের স্থানে (শূন্য ডিগী সেন্টিয়েডের নিচে) হিট পাম্প ব্যবহার করলে আউটডোর ইউনিটে বরফ জমে ভাপ স্থানান্তরে বিদ্রু ঘটতে পারে। সেক্ষেত্রে মাঝে মাঝে রিভার্সিং সাইকেল ব্যবহার করে অতিদ্রুত ডি-ফ্রস্টিং করা সম্ভব হয়। এর জন্যে পৃথক কোন ব্যবস্থার প্রয়োজন হয় না।
- ৫। হিট পাম্প ব্যবহার করার ফলে বিপুল পরিমাণ জীবাশা জালানির সাশ্রয় হয়।
- ৬। হিট পাম্পের সাহায্যে কক্ষ গরম করার জন্য কোন জ্বাদানি প্রজ্বপনের প্রয়োজন হয় না।

অ্যাডভাঙ্গভ রেক্রিঞ্চারেশন অ্যান্ড এয়ারকভিশনিং–২১

হিট পাম্পের অসুবিধা (Dis-advantages of heat pump) \$

- ১। হিট পাম্পে ব্যবহৃত চারমুখী ভাল্ভটির দাম বেশি এবং সচরাচর পাওয়া যায় না।
- ২। হাই গ্রেড এনার্জি ব্যবহার করা হয় বিধায় বিদ্যুৎ খরচ বেশি হয়।
- ৩। দাম বেশি।

১০.৮ হিট পাস্পের সাইকেল বিশ্লেষণ (Analyze the heat pump cycle) 8

সাধারণত রেফ্রিজারেশন এর ক্ষেত্রে "কো-ইফিসিয়েন্ট অব পারফরমেন্দ্র" (COP) এবং হিট পাস্পের ক্ষেত্রে "পারফরমেন্দ্র ফ্যাক্টর" (PF) বারা দক্ষতা প্রকাশ করা হয়।

সাধারণত অন্যান্য ক্ষেত্রে কর্মদক্ষতা ১ এর কম হয় কিন্তু রেফ্রিজারেশনের ক্ষেত্রে এবং হিট পাস্পের ক্ষেত্রে (খান্ত্রিক পদ্ধতির) কর্মদক্ষতা ১ এর অধিক হয়; সেজন্য ইচ্চিসিয়েন্সি না বলে, রেফ্রিজারেশনের ক্ষেত্রে কো-ইফিসিয়েন্ট অব পারফরমেন্স এবং হিট পাস্পের ক্ষেত্রে পারফরমেন্স ফ্যান্টর বারা দক্ষতা প্রকাশ করা হয়।

রেফ্রিজারেশনের ক্ষেত্রে আউটপুটকে (ইভাপোরেটরে গৃহীত তাপ) ইনপুট দ্বারা ভাগ করে COP পাওয়া যায়। রেফ্রিজারেশন সাইকেলে, যে তাপ গ্রহণ করে তাই আউটপুট, আর এ আউটপুট পেতে যে শক্তি দেয়া হয় তাই ইনপুট।

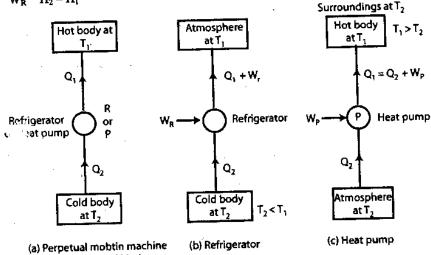
কার্যকরী সুগুতাপ গ্রহণ(আউটপুট) রেফ্রিজারেশনের ক্ষেত্রে COP = ক্লেপ্রসর পাম্পিং শক্তি (ইনপুট)

হিট পাম্পের ক্ষেত্রে আউটপুটকে (কভেন্সারে বর্জিত তাপ) ইনপুট ধারা ভাগ করে পারফরমেন্স ফ্যান্টর পাওয়া যায়।

কভেঙ্গারে তাপ বর্জন (আউটপুট) হিট পাম্পের ক্ষেত্রে, পারফরমেন্স ফ্যাষ্ট্রর = কম্প্রেসর পাম্পিং শক্তি (ইনপুট)

অন্যভাবে বলা যায়- আমরা জানি যে, ইঞ্জিনের কাজ হল তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করা। ইঞ্জিন কতটা সাফল্যের সাথে তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করছে তা প্রকাশ করা হয় ইঞ্জিনের দক্ষতা দিয়ে।

হিমায়ন যন্ত্র বা রেফ্রিজারেটর যাদ্রিক শক্তি গ্রহণ করে নিচু তাপমাত্রা থেকে উঁচু তাপমাত্রায় তাপ স্থানান্তর করে। সূতরাং রেফ্রিজারেটর বা হিমায়ন যন্ত্র কতটা সাফল্যের সাথে এ কাজটি করছে তা প্রকাশ করা হয় কো-ইফিসিয়েন্ট অব পারফরমেন্স বা

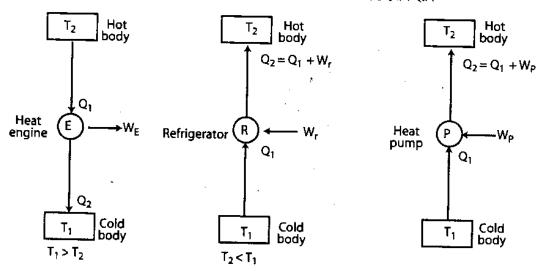

 $ext{COP}$ দিয়ে। $ext{COP}$ দক্ষতার উপ্টানুপাতিক $\left(rac{1}{\eta}
ight)$ । কারণ হিমায়ন যন্তে শক্তি প্রয়োগ ও প্রাপ্তি ইঞ্জিনের ঠিক উপ্টো η

(COP) $R = \frac{b$ াণ্ডা বন্ধু থেকে নিষ্কাশিত তাপ (H_1) । সিস্টেমে প্রয়োগকৃত কাজ (W_R)

তাপগতি বিজ্ঞানের প্রথম স্মান্সারে, $W_R=H_2-H_1$

$$\therefore (COP) R = \frac{H_1}{W_R} = \frac{H_1}{H_2 - H_1}$$

of the second kind


চিত্র ঃ ১০.১৩ তাপ ইঞ্জিন, বেক্সিজারেটর এবং হিট পাস্প

১০.৯ হিট পাস্পের পারফরমেন (The performance of heat pump) ঃ

হিট পাম্প এবং রেফ্রিন্সারেটর সাইকেলে কোন পার্থক্য নেই। মূল পার্থক্য অপারেটিং তাপমাত্রায়। রেফ্রিন্সারেটর কাজ করে বায়ুমণ্ডলীয় তাপমাত্রা (T_a) এবং ঠাতা বস্তুর তাপমাত্রার (T_1) ভেতরে। আর হিট পাম্প পরিচালিত হয় বায়ুমণ্ডলীয় তাপমাত্রা (T_2) এবং গরম বস্তুর তাপমাত্রার (T_2) ভেতরে। সুতরাং হিট পাম্পের কো-ইফিসিয়েন্ট অব পারকর্মেন্স $(COP)_H$

অথবা E.P.R =
$$\frac{H_2}{W_p} = \frac{H_2}{H_2 - H_1}$$
 [E.P.R এনার্জি পারফরমেন্স রেশিও]।
$$= \frac{W_R + H_1}{H_2 - H_1}$$
$$= \frac{W_R}{H_2 - H_1} + \frac{H_2}{H_2 - H_1}$$
$$= \frac{H_1}{H_2 - H_1} + \frac{H_2 - H_1}{H_2 - H_1} = (COP)_R + 1$$

সুতরাং দেখা যাচ্ছে, হিট পাম্পের COP রেফ্রিজারেটরের COP এর চেয়ে সব সময় ১ বেশি হয়।

চিত্র ঃ ১০.১৪ তাপ ইঞ্জিন, রেফ্রিজারেটর এবং হিট পাম্প

হিট পাম্প এবং রেফ্রিজারেটর সাইকেলে কোন পার্থক্য নেই, মূল পার্থক্য অপারেটিং তাপমাত্রায়। রেফ্রিজারেটর কাজ করে $\frac{1}{k}$ বায়ুমণ্ডলীয় তাপমাত্রা (T_a) এবং ঠাগ্রা বস্তুর তাপমাত্রার (T_1) ভেতরে। আর হিট পাম্প পরিচালিত হয় বায়ুমণ্ডলীয় তাপমাত্রা (T_a) প্রিপ্রিক্ত পারম বস্তুর তাপমাত্রার (T_2) ভেতরে। সূতরাং হিট পাম্পের কো-ইফিলিয়েন্ট অব পারফেরমেন্স $(COP)_H$

অথবা E.P.R =
$$\frac{Q_2}{W_P}$$
 = $\frac{Q_2}{Q_2 - Q_1}$ (E.P.R এর অর্থ এনার্জি পারকরমেন্স রেশিও)
$$= \frac{W_R + Q_1}{Q_2 - Q_1}$$
 = $\frac{W_B}{Q_2 - Q_1}$ + $\frac{Q_2}{Q_2 - Q_1}$ = $\frac{Q_1}{Q_2 - Q_1}$ + $\frac{Q_2 - Q_1}{Q_2 - Q_1}$ = $\frac{Q_1}{Q_2 - Q_1}$ + $\frac{Q_2 - Q_1}{Q_2 - Q_1}$ = $\frac{Q_1}{Q_2 - Q_1}$ + $\frac{Q_2 - Q_1}{Q_2 - Q_1}$

সুতরাং দেখা যাচেছ, হিট পাম্পের COP রেফ্রিজারেটরের COP এর চেয়ে সব সময় 1 বেশি হয়।

১০.১০ হিট পাম্প সম্পর্কিত সমস্যা সমাধান (Solve problems on heat pumps) 8

উদাহরণ-১ ঃ যদি সম্পৃক্ত বাস্পের এনখালপি 357 kJ/kg । সম্পৃক্ত তরলের এনখালপি 220kJ/kg এবং সুপাত্র হিটেড বাস্পের এনখালপি 377 kJ/kg হলে হিট পাম্পের wp কত হবে।

সদাবান জ দেওয়া আছে, h₃ = h₄ = 220 kJ/kg, h₁ = 357 kJ/kg

 $h_2 = 377 \text{ kJ/kg}$

আমরা জানি, (COP) н = কন্তেঙ্গার এর তাপবর্জন (O/P) কন্টেপ্সরের পাম্পিং শক্তি (i/p)

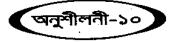
$$=\frac{h_2-h_3}{h_2-h_1}=\frac{377-220}{377-357}=7.85~\text{Ans.}$$

অথবা, $(COP)_H = (COP)_r + 1$

$$=\frac{RE}{WD}+1=\frac{H_1-H_4}{H_2-H_4}+1=\frac{357-220}{377-357}+1=7.85$$
 Ans.

উদাহরণ-২ ঃ একটি রেক্রিজারেটরে ইভাপোরেটর প্রতি মিনিটে 22kg শোষণ করে এবং কভেদার প্রতি মিটিটে 27 kg পরিত্যাদ করে। তাহলে রেক্রিজারেট কপ এবং হিট পাম্পের কপ কত হবে।

त्रमासान ह


দেওয়া আছে,

 $Q_1 = 22 \text{ kg/min}$

 $Q_2 = 27 \text{ kg/min}$

$$(COP)_R = \frac{Q_1}{Q_2 - Q_1} = \frac{22}{27 - 22} = 4.4 \text{ Ans.}$$

$$(COP)_H = (COP)_R + 1$$

= 4.4 + 1 = 5.4 Ans.

🕽 অতি সংক্ষিপ্ত প্রশ্নোন্তর ঃ

এয়ার সাইকেল হিট পাম্পের সংজ্ঞা দাও।

স্তিষ্কর । যে হিট পাস্পের হিমায়নে সাইকেশ-এর পরিবর্তন না করে তথু বাতাস প্রবাহের দিক পরিবর্তন করে কক্ষকে উত্তর্ত করা হয়, তাকে এয়ার সাইকেশ হিট পাস্প বলে।

২৷ হিট পাম্প বদতে কী বুঝা

[বাকাশিবো-২০১১]

[বাকাশিবো-২০১১]

াহত পাম্প বলতে কা বুঝা অধবা, হিট পাম্প কী?

স্ক্রিক্তর ট্রা বে রেফ্রিজারেশন ইউনিট নিমু তাপমাত্রা হতে তাপ গ্রহণ করে এবং তা উচ্চ তাপমাত্রায় পরিত্যাগ করে, তাকে হিট পাম্প বলে।

বর্তমানে ব্যবহৃত হচ্ছে এমন কয়েকটি হিট পাম্পের নাম লিব।
 অথবা, হিট পাম্পের তালিকা দাও।

[বাকাশিবো-২০১১]

ठेठच ह

- ১৷ এয়ার টু এয়ার হিট পাম্প (Air to air heat pump)
- ২। এয়ার টু ওয়াটার হিট পাম্প (Air to water heat pump)
- ৩ ৷ প্রয়াটার টু এয়ার হিট পাম্প (Water to air heat pump)
- ৪ ৷ প্রয়টার ট প্রয়াটার হিট পাম্প (Water to water heat pump)
- 🔥 । এয়ার টু লিকুইড হিট পাম্প (Air to liquid heaet pump) 🛚

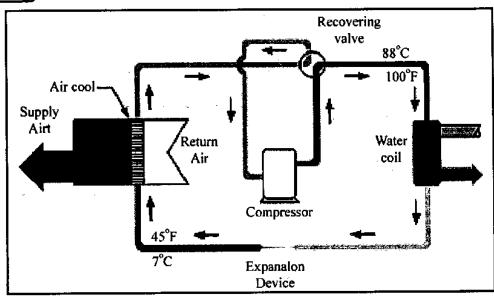
৪। হিট পাম্প ব্যবহারের উদ্দেশ্যক্তলো লিখ।
 অধবা, হিট পাম্পের প্রয়োগক্ষেত্রকলো লেখ।
 অথবা, শিল্পক্তের হিট পাম্পের ব্যবহার লিখ।
 অথবা, হিট পাম্পে ৪টি ব্যবহার ক্ষেত্রের নাম লিখ।

[বাকাশিবো-২০০৫, ২০০৬, ২০১২ (পরি), ২০১৫(পরি)]
[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৮]
[বাকাশিবো-২০০৮]

(উভর 🖁 হিট পাম্প ব্যবহারের উদ্দেশ্যওলো হল−

- 🔰। বাৎসরিক এয়ারকন্ডিশনার হিসেবে (Year round A.C) অর্থাৎ শীতকালে গরম এবং গ্রীষ্মকালে ঠাণ্ডা করার কাজে।
- ২। ইভাপোরেটর ডি-ফ্রাস্টিং এর কাজে।
- ৩। যে সকল শিল্পে পণ্য প্রক্রিয়াজাত বা উৎপাদনে ঠান্তা ও গরম উভয়ই প্রয়োজন হয় সেক্ষেত্রে। যেমন-
 - (**क**) পানি পরিশোধনের কাজে।
 - (খ) ফলের রস, দুধ এবং চিনির রস ঘন করার কাজে।
- ৪। সামৃদ্রিক লবণাক্ত পানি পরিশোধনের কাজে।
- ৫। রঙ এবং রাসায়নিক পদার্থ ঘন করার কাজে।
- ৬। খাওয়ার লবণ (Taste salt) ও পাউডার দুধ তৈরির কারখানায়।
- ইট পাম্পের COP নির্ণয়ের স্কাটি লেখ। [বাকাশিবো-২০০৭, ২০০৮, ২০১০, ২০১২, ২০১০ (পরি), ২০১৫(পরি)]
 অথবা, COP নির্ণয়ের স্কাটি লেখ।

্ঠিছর 🖟 হিট পাম্পের ক্ষেত্রে, COP ≕ কভেদার তাপ বর্জন(আউটপুট) কম্প্রেসর পাম্পিং (ইনপুট)


>> সংক্ষিপ্ত প্রশ্নোন্তর ঃ

১। বিভার্সিং ভালভ এর প্রয়োজনীয়তা লিখ।

🝅 छর 🖁 রিভার্সিং ভালব এর সাহায্যে কুলিং কয়েল হিটিং কয়েল কভেন্সার-এ অথবা কভেন্সারকে কুলিং কয়েলে পরিণত করা যায়।

২। ওয়াটার টু এয়ার হিট পাম্পের চিন্রটি অঙ্কন কর।

छैछन्न ह

চিত্র ঃ গুয়াটার টু এয়ার হিট পাস্পের চক্র

আডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

Geothermal heat পাম্প এবং Air source হিট পাম্প Solar heat পাম্প এর মধ্যে পার্থক্য দিখ ৷ [বাকাশিবো-২০০৯] 91

🍅 ভর 🖪 Geothermal heat পাম্প এবং Air source হিট পাম্প Solar heat পাম্প এর মধ্যে পার্থক্যনিমুক্তপ—

Geothermai হিট পাম্প	Air source হিট পাস্প	Solar heat भाष्य
 Geothermal heat পাম্প সেন্ট্রালি হিটিং এবং কুলিং এর জন্য ব্যবহার করা হয়। 	1 111	বর্তমানে সেম্ট্রাল এবং ক্রম হিটিং এবং কুলিং উভয় কাজেই সোলার হিট পাম্প ব্যবহার হয়। সোলার হিট পাম্প।
 এই পাম্পের দক্ষতা তুলনামূলক কম। 	2. Air source হিট পাম্প এর দক্ষতা বেশি।	
 গ্রাউন্ত সোর্স (Ground Source) হিট পাস্প ভূপৃষ্ট থেকে তাপ গ্রহণ অথবা ভূপৃষ্ঠ তাপ ত্যাগ করে। 	পাম্প বাহির থেকে বিন্ডিং এর	
 এই পাস্পের দক্ষতা তুলনামূলক বেশি। 	 এই পাম্পের তাপিয় দক্ষতা বেশি। 	
 ভেরিয়েবল স্পিড ক্র্পেপ্রসর ব্যবহার করা যায়। 	 ভেরিয়েবল স্পিড কম্প্রেসর ব্যবহার করা যায় না। 	
6. খরচ বেশি।	6. তুলনামূলক বরচ কম	<u> </u>

🕽 द्राप्रवासूनक श्रञ्जावितः

রিভার্স ভালভের সাহায্যে কুলিং এবং হিটিং মুডসহ হিট পাম্পের বর্ণনা দাও।

ঠিচর সংক্রেড s অনুচেহদ ১০.০ নং দ্রষ্টব্য।

২। প্রমাণ কর যে, হিট পাম্পের COP রেফ্রিজারেটরের COP-এর চেরে এক বেশি।

(উষর সম্কেত 🖁) অনুচেছদ ১০.৬ নং দ্রষ্টব্য 🗆

হিট পাম্পের সুবিধা ও অসুবিধাসমূহ निच।

ঠিচর সংক্ষেত জ্ব অনুচেছদ ১০.৫ নং দ্রষ্টব্য।

কুলিং ও হিটিং মুডসহ হিট পাম্পের কার্যপ্রণালি বর্ণনা কর।

[বাকাশিবো-২০১২ (পরি), ২০১৪, ২০১৫(পরি)]

ঠিচর সংকেত 💅) অনুচেছদ ১০,৪ নং দ্রষ্টব্য ।

হিট পাম্পের কার্যপ্রণাদি চিত্রসহ বর্ণনা কর।

[বাকাশিবো-২০১১]

ঠিচর সংক্রেড ট অনুচেছদ ১০.৩ নং দ্রষ্টব্য।

একটি হিট পাম্প সাইকেন অন্ধন করে উহার কার্যপ্রণানি বর্ণনা কর।

[বাকাশিবো-২০০৪]

ঠিচর সংক্রেন্ত 🕖 অনুচেছদ ১০.৩ নং দ্রুষ্টব্য।

শিক্সকারখানার হিট পাম্পের ব্যবহার বিস্তারিত আলোচনা কর।

[বাকাশিবো-২০০৯]

ভিতর সংক্রেন্ড 🛭 অনুচ্ছেদ ১০.৫ নং দ্রষ্টব্য।

হিট এক্সচেঞ্চার (Heat Exchanger)

১১.০ সুচনা (Introduction) ই

হিট এক্সচেঞ্চার এমন একটি ডিভাইস যার মধ্যে দুটি ভিন্ন তাপমাত্রার প্রবাহীর মধ্যে তাপ ছালান্তর বা বিনিময় হয়। ইটে এক্সচেঞ্চার-এ ব্যবহৃত দুটি প্রবাহী চলমান হতে পারে, আবার একটি প্রবাহী ছির এবং অপরটি চলমান হতে পারে। প্রবাহী দুটির প্রবাহ একই দিকে, বিলরীত দিকে এবং কৌণিকভাবে হতে পারে। হিট এক্সচেঞ্চার এক প্রবাহী থেকে অন্য প্রবাহীতে তাপ ছালান্তরকালে সাধারণত প্রবাহী দুটির মধ্যে একটি কঠিন বস্তুর দেয়াল (Solid wall) থাকে। তবে প্রবাহী দুটির মধ্যে সরাসরি সংস্পর্শেও তাপ বিনিময় হতে দেখা যায়। হিট এক্সচেঞ্জার পাওয়ার প্লান্টে রেঞ্জিজারেশন এবং এয়ারকভিশনিং সিস্টেমে, ফুড প্রসেসিং ইউনিটে, কেমিক্যাল বা রাসায়নিক শিল্পকারখানায় এবং এরানটিক্যাল (Aeronautical) ফিন্ডে ব্যবহৃত হয়।

হিট এক্সচেঞ্চারে তাপ স্থানান্তরের হার নির্ণয়ের জন্য নিচের অনুমান বা অনুকল্প (Assumptions) সমূহ মেনে চলা হয়-

- 🕽 । সার্বিক তাপ স্থানান্তর গুণাঙ্ক 🖰 ধ্রুব থাকবে।
- ২। প্রবাহীর তাপ ক্ষমতা (Heat capacities) অপরিবর্তিত থাকবে।
- ৩ ৷ নির্গমনকালে প্রবাহীর প্রবাহ পাকবে অবিচল (Steady)
- 8। নির্ধারণ করা না থাকলে হিট এক্সচেক্সারের বাইরে কোন স্থানান্তর হবে না :

সুতরাং তাপ স্থানান্তরের পরিমাণ, $Q = US \Delta t_m$

যেখানে ∪ = তাপ স্থানান্তর গুণাত্ত

A = তাপ স্থানান্তরের পৃষ্ঠের ক্ষেত্রফল

 $\Delta t_m = দৃটি প্রবাহীর তাপমাত্রার পার্থক্যের গড়মান<math>\perp$

 $\Delta t_{m}=$ প্রবাহী দুটির তাপমাত্রা পার্থক্যের গাণিতিক গড়মান অর্থাৎ $\dfrac{\Delta t_{1}+\Delta t_{2}}{2}$

এটিকে লগারিদমিক গড় তাপমাত্রা পার্থক্য (Logarithmic mean temperature difference) বলে। লগারিদমিক গড়মান নির্বায়ের সূত্র নিম্নে দেয়া হল ঃ

$$(\Delta t)_{m} = \frac{(\Delta t) \max - (\Delta t) \min}{\log_{e}(\Delta t) \max}$$

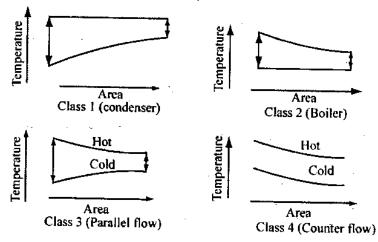
এ অধ্যায়ের শেষে 🕰 নির্ণয়ের উপরের সূত্রটি বিস্তারিত দেখানো হয়েছে।

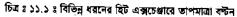
১১.১ বিট প্রক্রমান (State the meaning of heat exchanger) \$

হিট এক্সচেপ্লার এমন একটি ডিভাইস যার মধ্যে দু'টি ভিন্ন তাপমাত্রার প্রবাহীর মধ্যে তাপ স্থানান্তর বা বিনিময় হয়। চলমান ভি প্রবাহী দুটির প্রবাহের দিক একই দিকে বা বিপরীত দিকে হতে পারে। হিট এক্সচেপ্লারে এক প্রবাহী থেকে অন্য প্রবাহীতে তাপ খি স্থানান্তরকালে সাধারণত প্রবাহী দুটির মধ্যে একটি কঠিন বন্তুর দেয়াল (Solid wall) থাকে। তবে প্রবাহী দু'টির মধ্যে সরাসরি বিশ্ব

১১.২ হিট এক্সচেম্বারের শুরুত্ব (Outline the importance of heat exchangers) ঃ

রেফ্রিজারেশন ও এয়ারকভিশনিং এর ক্ষেত্রে হিট এক্সচেক্সার একটি গুরুত্বপূর্ণ বিষয়। মূলত রেফ্রিজারেশন ও এয়ারকভিশনিংয়ে হিটিং ও কুলিং কাজে Heat exchange বা তাপ বিনিময় ছাড়া কাজ্কিত ফলাফশ লাভ করা যায় না, আর তাই Heat exchanger-এর মাধ্যমে প্লান্টের ক্যাপাসিটি ও দক্ষতা বৃদ্ধি পায়। তাই হিট এক্সচেক্সারের গুরুত্ব অনেক।


একটি হিট এক্সচেন্তার ব্যবহারের সুবিধা ঃ


- প্লান্টের ক্যাপাসিটি এবং দক্ষতা বৃদ্ধি পায়।
- ওভার অল হিট ট্রান্সফার কোইফিসিয়েন্ট বেশি।
- সহজে রক্ষণাবেক্ষণ করা যায়।
- কম জায়গার প্রয়োজন হয়।
- সহজ্পত্য
- হিট ট্রান্সফার দক্ষতা বেশি।

১১.৩ হিট এক্সচেঞ্চারের শ্রেপিবিভাগ (Mention the types of heat exchangers) ঃ

- (ক) ডিজাইন অনুসারে হিট এক্সচেঞ্জার তিন ডাগে ভাগ করা যায় ঃ
 - ১। ডাইরেক্ট কন্টান্ত হিট এক্সচেঞ্জার (Direct contact heat exchanger) !
 - ২। রিজেনারেটর হিট এক্সচেঞ্চার (Regenerator heat exchanger)।
 - ৩। রিকিউপারেটর হিট এক্সচেজ্বার (Recuperator heat exchanger)।
- (খ) উত্তপ্ত ও শীতল প্রবাহীর ধরন অনুসারে রিকিউপারেটর হিট এক্সচেজারকে পাঁচ ভাগে ভাগ ক্রা যায় ঃ
 - ১। প্যারালাল ফ্লো হিট এক্সচেঞ্জার (Parallel flow heat exchanger)।
 - ২। কাউন্টার ফ্লো হিট এক্সচেঞ্জার (Counter flow heat exchanger)।
 - ৩। কুস ফ্লো হিট এক্সচেক্সার (Cross flow heat exchanger)।
 - 8। সিঙ্গেল পাস হিট এক্সচেন্তার (Single pass heat exchanger)।
 - ৫। মাল্টিপাস হিট এক্সচেঞ্জার (Multipass heat exchanger)।
- (গ) গঠন অনুসারে হিট এক্সচেঞ্জার দুই ভাগে ভাগ করা যায় ঃ
 - ১। শেল অ্যান্ড টিউব টাইপ হিট এক্সচেজার (Shell and tube type heat exchanger)।
 - ২। কমপ্যান্ত হিট এক্সচেন্ডার (Compact heat exchanger)।

সকল প্রকার হিট এক্সচেপ্রারকে পাঁচ ভাগে ভাগ করা যায় ঃ

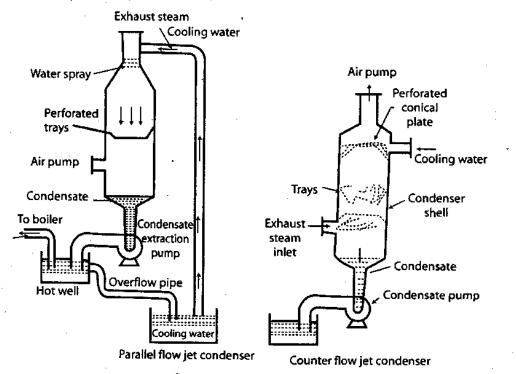
প্রথম শ্রেণির হিট এক্সচেঞ্চার (Class one heat exchanger) ই এ হিট এক্সচেঞ্চারে উত্তপ্ত প্রবাহী সম তাপমাত্রায় শীতল প্রবাহীতে তাপ দেয়। এতে শীতল প্রবাহীর তাপমাত্রা বৃদ্ধি পেতে থাকে। তাপ প্রদানকারী প্রবাহী হতে পারে স্থির অথবা যে কোন দিকে চলমান। স্টিম কন্ডেমার এ ধরনের হিট এক্সচেঞ্জারের একটি উদাহরণ।

षिতীয় শ্রেপির বিট প্রক্সচেন্তার (Class two heat exchanger) ই এ হিট এক্সচেন্তারে সম তাপমাত্রায় উত্তপ্ত প্রবাহীর তাপমাত্রা হাস পেতে থাকে। তাপ গ্রহণকারী প্রবাহী স্থির অথবা যে কোন দিকে চলমান হতে পারে। স্টিম বয়লার এ ধরনের হিট এক্সচেন্তারের উদাহরণ।

ভূতীয় শ্রেপির হিট এক্সচেক্সার (Class three heat exchanger) ই এ হিট এক্সচেক্সারে দু'টি ফুয়িডই একই দিকে সমান্তরালে প্রবাহিত হয় এবং উভয় ফুয়িডের তাপমাত্রা পরিবর্তন হয়। অনেক ডিভাইস যেমন— ওয়াটার হিটার, অয়েল হিটার এবং কুলার এ শ্রেপির আওতাভূক্ত। একে প্যারালাল ফ্রান হিট এক্সচেক্সার বলে।

চতুর্থ শ্রেণির হিট এক্সচেন্ধার (Class four heat exchanger) ই এ হিট এক্সচেন্ধারে প্রবাহী দু'টি সমান্তরালে বিপরীত দিকে প্রবাহিত হয় এবং উভয়ের তাপমাত্রা পরিবর্তন হয়। এটি অত্যক্ত জনপ্রিয় ফুয়িড হিটার এবং কুলার। এটিকে কাউন্টার হিট এক্সচেন্ধার বলে।

পঞ্চম শ্রেপির বিট এক্সচেজার (Class five heat exchanger) ১ এ বিট এক্সচেজারে প্রবাহী দু'টি পরস্পর একটি নির্দিষ্ট কোণে প্রবাহিত হয় ৷ একে ক্রন ফ্রো বিট এক্সচেজার বলে :


১১.৪ মীন টেম্পারেচার ডিফারেল (Define mean temperature difference) ঃ

হিট এক্সচেঞ্চার Surface এর দু' প্রান্তের তাপমাত্রার পার্থক্যকে Mean temperature difference বলে। অর্থাৎ তাপ বিনিময়ের পরে তাপমাত্রার যে ব্যবধান তাকেই Mean temperature difference বলে।

১১.৫ বিভিন্ন হিট এক্সচেম্বারের কার্যপ্রণাদির বর্ণনা (Describe the operation of different types of heat exchanger) ঃ

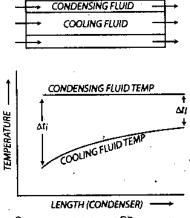
১১.৫.১ ডাইরেট্ট কণ্টাষ্ট হিট এক্সচেয়ার (Direct contact heat exchanger) 8

দু'টি প্রবাহী সরাসরি সংস্পর্লে এসে যে হিট এক্সচেঞ্জারে তাপ বিনিময় বা স্থানান্তর হয়, তাকে ডাইরেন্ট হিট এক্সচেঞ্জার বলে। উদাহরণ ঃ ওয়াটার কুলিং টাওয়ার, জেট কন্ডেন্সার ইত্যাদি।

চিত্র ঃ ১১.২ ডাইরেট কন্টাট্ট এক্সচেপ্রার

১১.৫.২ উদাহরণসহ রিজেনারেটিভ হিট এক্সচেম্বারের অপারেশন (The operation of regenerative heat exchanger with example) 8

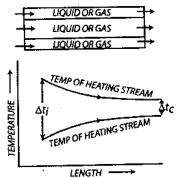
এ হিট এক্সচেঞ্চারে উত্তপ্ত প্রবাহী প্রথমে কোন মাধ্যমের ভিতর দিয়ে প্রবাহিত হয়। এ মাধ্যমকে ম্যাট্রিক্স (Matrix) বলা হয়। উত্তপ্ত প্রবাহী ম্যাট্রিক্স এর ভিতর দিয়ে প্রবাহিত হওয়ায় তা উত্তপ্ত হয় এবং তাপ সঞ্চিত হয়। এ অপারেশনকে হিটিং পিরিয়ড বলে। পরে ঐ উত্তপ্ত ম্যাট্রিক্সের ভিতর দিয়ে শীতদ প্রবাহী প্রবাহিত হতে দেয়া হয়। এ অপারেশনকে কুলিং পিরিয়ড বলে। এভাবে রিজেনারেটর হিট এক্সচেঞ্জার তাপ বিনিময় করে থাকে।


উদাহরণ ঃ ওপেন হার্য ও গ্লাস মেলটিং ফার্নেস এবং ব্লাস্ট ফার্নেসের এয়ার হিটারসমূহ।

১১.৫.৩ রিকিউপারেটর হিট এক্সচেঞ্চার অপারেশন (Recuperator heat exchanger) 8

এ হিট এক্সচেঞ্চারের প্রতিটি বিভক্তকারী দেয়ালের ধার দিয়ে যুগপৎভাবে উন্তপ্ত ও শীতল প্রবাহী প্রবাহিত হয়ে তাপ বিনিময় করে।
উদাহরণ ঃ স্টিম প্লান্টের কন্ডেন্সার এবং সুপারহিটার, রেফ্রিজারেশন ইউনিটের কন্ডেন্সার এবং ইভাপোরেটর, মোটরযানের
রেডিয়েটর ইত্যাদি।

১১.৫.৪ প্যারালাল ফ্লো হিট এক্সচেন্তার (Parallel flow heat exchanger) 8


এতে উত্তপ্ত ও শীতল উভয় প্রবাহী সমান্তরালভাবে একই দিকে প্রবাহিত হয়ে তাপ বিনিময় করে। ১১.৩ নং চিত্রে একটি প্যারালাল ফ্রো হিট এক্সচেঞ্জার (কভেন্সার) দেখানো হয়েছে।

চিত্র ঃ ১১,৩ প্যারালাল ফ্রো হিট এক্সচেঞ্চার

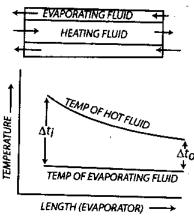
এতে কন্ডেন্সিং ফুয়িড এর তাপমাত্রা ছির থাকে কিন্তু সুগুতাপ বর্জন করে বাস্প থেকে তরলে পরিণত হয়। কুন্সিং ফুয়িড কন্ডেন্সিং ফুয়িডের বর্জিত তাপ গ্রহণ করে উম্বপ্ত হয়।

চিত্র ঃ ১১.৪ নং এ অপর একটি প্যারালাল ফ্লো হিট এক্সচেপ্তার দেখানো হয়ছে। চিত্রের উপরের অংশে ফুয়িড এর তাপমাত্রা পরিবর্তন হয়।

চিত্র ঃ ১১.৪ প্যালালাল মেশ হিট এক্সচেঞ্চার

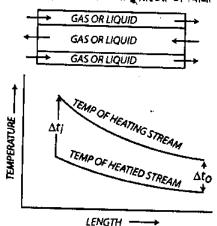
অর্থাৎ সমগ্র দৈর্ঘ্য বরাবর তাপ বিনিময় হয়। প্রবেশকালে তাপ প্রদানকারী ও তাপ গ্রহণকারী ফুয়িডের তাপমাত্রার পার্থক্য Δt_i দিয়ে এবং বের হওয়ার সময় তাপমাত্রার পার্থক্য Δt_0 দিয়ে নির্দেশ করা হয়েছে।

উভয় ক্ষেত্রে তাপ স্থানান্তরের পরিমাণ্, Q=UA Δt_m


যেখানে, U = তাপ পরিবহন গুণায় ৷

A = তাপ স্থানান্তরের ক্ষেত্রফল।

১১.৫.৫ কাউ-টার ফ্লো হিট এক্সচেপ্তার (Counter flow heat exchanger) ঃ


এ হিট এক্সচেঞ্চারে উত্তর ও শীতদ প্রবাহী পরস্পর বিপরীতমুখী হয়ে সমান্তরালভাবে প্রবাহিত হয়ে তাপ বিনিময় করে:

১১.৫ নং চিত্রে কাউন্টার ফ্রো হিট এক্সচেঞ্জার দেখানো হয়েছে। এটি একটি ইভাপোরেটর। চিত্রের উপরের অংশে ফুব্লিড দুটির প্রবাহ এবং নিচের অংশে দৈর্ঘ্য বরাবর তাপ বন্টন দেখানো হয়েছে। এতে একটি ফুন্নিডের তাপমাত্রা ছির থাকে এবং হিটিং ফুন্নিড থেকে সুগুতাপ গ্রহণ করে তরল থেকে বায়বীয় অবস্থার রূপান্তর হয়।

চিত্র ঃ ১১.৫ কাউন্টার ফ্রো হিট এক্সচেঞ্চার

হিটিং ফুরিড থেকে ইভাপোরেটিং ফুরিড স্গুতাপ গ্রহণ করে বলে হিটিং ফুরিডের তাপমাত্রা হাস পায়। ১১.৬ নং চিত্রে অপর একটি কাউন্টার ফ্লো হিট এক্সচেঞ্জার দেখানো হয়েছে। এক্ষেত্রে উভয় ফুরিডের তাপমাত্রা পরিবর্তন হয়।

চিত্র ঃ ১১.৬ কাউন্টার ফ্রো হিট এক্সচেক্সার

চিত্রের উপরের অংশে ফুয়িড দৃটির প্রবাহ এবং নিচের অংশে হিট এক্সচেঞ্চারের দৈর্ঘ্য বরারর তাপমাত্রা বন্টন দেখানো হয়েছে। ফুয়িড দৃটি গ্যাস বা তরল হতে পারে। কাউন্টার ফ্লো বন্দোবন্তে দু'টি ফুয়িডের তাপমাত্রার পার্থক্যের গড়মান প্যারালাল ফ্লো বন্দোবন্তের চেয়ে বেশি। ফলে নির্দিষ্ট হারের তাপ স্থানান্তরের জন্য কাউন্টার ফ্লো হিট এক্সচেঞ্চারের কম সারফেসের প্রয়োজন হয়। এক্ষেত্রে তাপ স্থানান্তরের পরিমাণ, $Q = UA\Delta t_m$

১১.৫.৬ ক্রস ফ্রো হিট এক্সচেঞ্চার (Cross flow heat exchanger) 8

এ হিট এক্সচেঞ্চারে উত্তপ্ত ও শীতল প্রবাহী পরস্পরের সাথে সমকোণে (90°) প্রবাহিত হয়ে তাপ বিনিময় করে। চিত্র ঃ ১১.৭ নং এ একটি ক্রস ফ্লো হিট এক্সচেঞ্জার দেখানো হয়েছে।

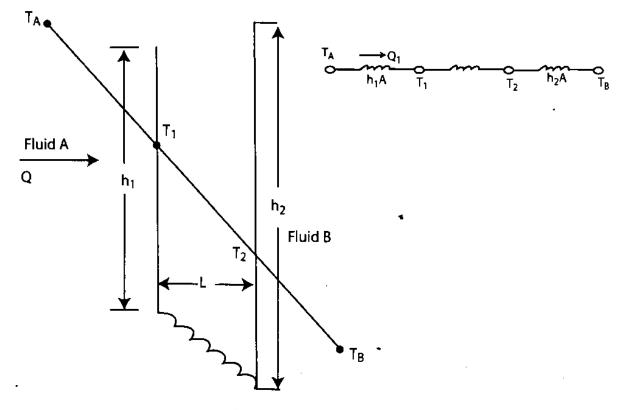
চিত্র ঃ ১১.৭ ফ্রন্স ফ্রো হিট এক্সচেঞ্জার ও তাপমাত্রার বন্টন

১১.৬ হিট এক্সচেপ্তার ডিজাইনে বিবেচ্য বিষয়সমূহ (Factors to be considered to design a heat exchanger) 8

একটি হিট এক্সচেঞ্ছার ডিজাইন করার সময় নিম্নলিখিত বিষয়সমূহ বিবেচনায় রাখতে হবে-

- ১। প্রয়োজনীয় তাপ স্থানান্তর (Heat transfer requirements)।
- ২। ব্যয় (Cost) ।
- ৩। সাইজ (Size)।
- 8 : প্রেসার দ্রপ (Pressure drop) !

১১.৬.১ ওভার-অল হিট ট্র্যালফার কো-ইঞ্চিসিয়েন্টের সমীকরণ (Express the derivation of formula to calculate over-all transfer co-efficient) 8



$$\therefore Qn = \frac{\Delta T}{L/_{KA}}$$

Heat flow = $\frac{\text{Thermal potential difference}}{\text{Thermal resistance}}$

Where L/KA = resistance, ΔT = Thermal potential difference

চিত্র ঃ ১১.৮ ওয়ালের হিট ট্র্যাব্দকার প্রণালি

চিত্ৰ হতে,
$$Q = h_1 A (T_A - T_1) = \frac{KA}{L} (T_1 - T_2) = h_2 A (T_2 - T_B)$$

$$T_A - T_1 = \frac{Q}{h_1 A}$$

$$T_1 - T_2 = Q/L/KA$$

$$\frac{T_2 - T_B = Q/h_2A}{T_A - T_B = Q\left(\frac{1}{h_1} + \frac{L}{KA} + \frac{1}{h_2A}\right)}$$

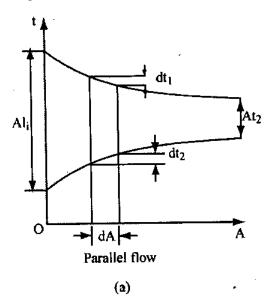
$$\therefore Q = \frac{T_A - T_B}{1/h_1 A + \frac{L}{KA} + \frac{1}{h_2 A}}$$

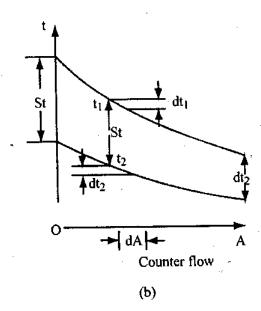
.. Over all heat transfer co-efficient :

$$U = \frac{1}{1/h_1 \ A + {}^{L}/_{KA} + {}^{L}/h_2A}$$

বা,
$$U = A. \frac{1}{1/h_1 + \frac{1}{L/K} + \frac{1}{L/h_2}}$$

∴ Heat transfer, Q = U.A. ΔT Overall


=
$$\frac{1}{1/h_1 + \frac{1}{N_R} + \frac{1}{N_{h2}}}$$
. A. ΔT Overall.



১১.৬.২ লগারিদমিক মিন টেম্পারেচার ডিফারেল (Logarithmic mean temperature difference) 🛭

আমরা জানি, সব ধরনের হিট এক্সচেঞ্চারের ক্ষেত্রে তাপ স্থানান্ডরের হার ঃ

$$Q = UA\Delta t_m$$
(11.1)

চিত্র ঃ ১১.৯ হিট এক্সচেঞ্চারের টেম্পারেচার ডায়াগ্রাম

প্রথমে আমরা প্যারালাল ফ্রো বিবেচনা করি।

ধরি, $dA = \gamma$ ঠের ক্ষেত্রফলের সামান্য অংশ এবং Δt তাপমাত্রা পার্থক্যের কারণে তাপ স্থানান্তরের পরিমাণ dQ। সূতরাং, $dQ = -m_1C_{P1} dt_1$ উত্তপ্ত বস্তু কর্তৃক তাপ ঘাটতির পরিমাণ $= m_2 C_{P2} dt_2$ শীতল বস্তু কর্তৃক গৃহীত তাপের পরিমাণ

......11.2) যেখানে m_1 এবং m_2 প্রবাহী দু'টির ভর প্রবাহের হার এবং $C_{\rm pl}$ ও $C_{\rm p2}$ আপেঞ্চিক তাপ ।

অতএব, dt₁ =
$$\frac{-dQ}{m_1C_{p_1}}$$
.....(11.3)

এবং
$$dt_2 = \frac{dQ}{m_1 C_{p_2}}$$
....(11.4)

আর
$$\Delta t = (t_1 - t_2)$$
(11.5)

সুতরাং d (
$$\Delta t$$
) = d t_1 – d t_2 = – $\left(\frac{1}{m_1 C_{p_1}} + \frac{1}{m_2 C_{p_2}}\right)$ d Q (11.6)

অনুরপভাবে কাউন্টার ফ্লো হিট এক্সচেঞ্চারের ক্ষেত্রে

$$dQ = -m_1 C_{p_1} dt_1$$
 (ভাপমাত্রাব্রাস)

$$=-m_2 C_{p_2} dt_2$$
 (তাপমাত্রাক্রাস)(11.7)

অভএৰ,
$$d\Delta t = dt_1 - dt_2 = -\left(\frac{1}{m_1C_{p1}} - \frac{1}{m_2C_{p_2}}\right) dQ......(11.8)$$

সমীকরণ ১১.৬ এবং ১১.৮ মিলিয়ে ইনলেট ও আউটলেট কভিশনে তাপমাত্রা পার্থক্য যথাক্রমে Δt_1 এবং Δt_0 ধরে ইন্টিয়েটিং করে আমরা পাই,

$$-\left(\frac{1}{m_1 C_{p_1}} \pm \frac{1}{m_2 C_{p_2}}\right) Q = \Delta t_0 - \Delta t_1....(11.9)$$

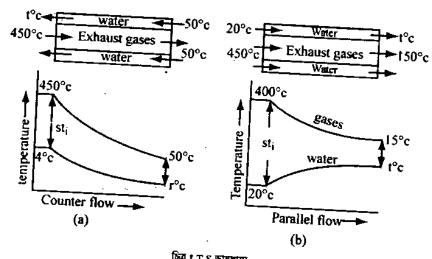
+ ve চিহ্ন কাউন্টার ফ্রো এবং -ve চিহ্ন প্যারালাল ফ্রো নির্দেশ করে।

সুজ্বাং
$$\left(\frac{1}{m_1 C_{p1}} \pm \frac{1}{m_2 + C_{p2}}\right)$$
 U DA = $\frac{d (\Delta t)}{\Delta t}$ (11.11)

সমীকরণ ১১.১১ ইনলেট ও আউটলেট কন্তিপনে ইন্টিয়েটিং করে আমরা পাই,

$$\left(\frac{1}{m_1 C_{pt}} \pm \frac{1}{m_2 + C_{p2}}\right) UA = \log_e \frac{\Delta t_0}{\Delta t_i}$$
 (11.12)

$$Q = UA \frac{\Delta t_0 - \Delta t_i}{\log_e (\Delta t_0 / \Delta t_i)} \dots (11.13)$$


$$\Delta t_{m} = \frac{\Delta t_{0} - \Delta t_{i}}{\log_{c} \left(\Delta t_{0} / \Delta t_{i}\right)} \dots (11.14)$$

 Δt_m কে লগারিদমিক মিন টেম্পারেচার বলে, যা প্রবাহী দু'টির ভাপমাত্রার পার্থক্যের গড়মান $\Delta t_m = \frac{\Delta t_1 - \Delta t_2}{2}$ এর থেকে পৃথক t

১১.৭ সমাধানসহ সমস্যাবলি (Solved problems) 8

সমস্যা-১। টিউববৃক্ত একটি হিট এক্সচেজারের তেডর দিয়ে 20 kg/min হারে এপজস্ট গ্যাস প্রবাহিত হয়ে ঠার্জ হয় একং 450°C ভাপমাত্রা থেকে 150°C ভাপমাত্রার পরিপত হর। ঠাজ করার কাজে পানি ব্যবহৃত হর বার প্রাথমিক ভাপমাত্রা 20°C। ণ্যাসের আপেক্কিক ভাগ 1.23 k.J/kgk এবং সার্বিক ভাগ ছানান্তর স্বশাহ 140W/m² K. যদি গানি 25 kg/min **হারে প্র**বাহিত হর, ভবে হিট এক্সচেক্সারের সারকেস এরিয়ার পরিমাণ নির্পন্ন কর ‡ (i) প্যারালাল ক্লো এর জন্য (ii) কাউন্টার ক্লো এর জন্য।

সমাভান 🛭 চিত্ৰের দিকে নঞ্জর দেই–

চিত্ৰ ‡ T-S ভারনাম

হিট এক্সচেঞ্চারের ভাপ সমতা (Heat balance) থেকে আমরা পাই-

Q = গ্যাস থেকে প্রতি ঘন্টায় তাপ স্থানান্তরের হার = পানিতে ফটায় তাপ স্থানান্তরের হার

$$Q = m_g \times C_{pg} (t_{g1} = t_{g2}) \approx m_w \times C_{pw} \times (t_{w2} - t_{w1})$$

$$Q \approx 20 \times 60 \times 1.13 \times 600$$

$$Q \approx 20 \times 60 \times 1.13 \times (450 - 150) = 25 \times 60 \times 4.1868 \times (t_{w2} - 20)$$

$$Q = 406800 = 25 \times 60 \times 4.1868 \times (t_{w2} - 20)$$

$$Q = 406800 = 25 \times 60 \times 4.1868 (t_{-2} - 20)$$

সূতরাং পানির আউটলেট ভাপমাত্রা

$$t_{w2} = \frac{406800}{25 \times 60 \times 4.1868} + 84.8^{\circ}\text{C}.$$

(i) প্যারালাল প্রবাহের জন্য
$$\Delta l_o = (450-20) = 430^{\circ} C$$

$$\Delta t_o = (150-84.8) = 65.2^{\circ} C$$
সুতরাং $\Delta l_m = \frac{\Delta t_i - \Delta t_0}{\log_e{(\Delta t_i / \Delta t_0)}} = \frac{430-65.2}{\log_e{65.2}}$

$$= \frac{364.8}{\log_e{6.595}} = \frac{364.8}{1.8863} = 193.4^{\circ} C$$

আবার, $Q = UA \Delta t_m$

অভএব, A =
$$\frac{Q}{U \Delta t_m} = \frac{406800 \times 1000}{60 \times 60 \times 140 \times 193.4}$$

= 4.173 m² (উন্ধা)।

(ii) কাউন্টার প্রবাহের জন্য $\Delta t_i = (450 - 84.8) = 365.2$ °C

$$\frac{\Delta t_0 = (150 - 20) = 130^{\circ}C}{\text{20sig} \Delta t_m \frac{\Delta t_i - \Delta t_0}{\log_e \left(\Delta t_i \, / \, \Delta t_0\right)} = \frac{365.2 - 130}{\log_e \frac{365.2}{130}} = \frac{235.2}{\log_e 2.8092} = \frac{235.2}{1.0329}$$

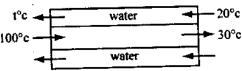
অতএব ক্ষেত্রফল, A =
$$\frac{Q}{U \Delta t_m} = \frac{406800 \times 1000}{60 \times 60 \times 140 \times 227.7}$$

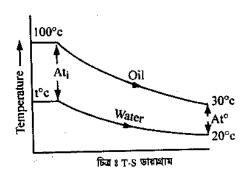
= 3.545 m² (উন্ধ্র)

সমস্যা-২। একটি কাউন্টার ফ্রো হিট এক্সচেন্সারে প্রতি ঘণ্টার 1400 kg তেল ঠান্তা করা হচ্ছে যার হিট ক্যাপাসিটি 3kJ/kgk এবং তেলকে 100°C থেকে ঠান্তা করে 30°C-পরিণত করছে। তেল ঠান্তা করতে পানি ব্যবহার করা হচ্ছে যার প্রাথমিক তাপমাত্র 20°C। যদি সার্বিক তাপ ছানান্তরে ত্রপান্ধ 4000 kJ/hr -- m² k হয় তবে পানির আউটলেট তাপমাত্রা এবং তাপ ছানান্তরের ক্ষেত্রফানির কর। হিট এক্সচেন্সারের যে কোন সেকশনে তেল ও পানির মধ্যে সম্পর্কও নির্ণন্ন কর।

সমাধান B চিত্রের দিকে নজর দেই-

Q = তেল থেকে তাপ স্থানান্তর


= পানিতে তাপ স্থানান্তর।


তাহলে, $Q = 1400 \times 3 \times (100 - 30)$

 $= 1300 \times 4.1868 \times (t_{w2} - 20)$

এবং $Q = 294,000 = 1,300 \times 4.1868 \times (t_{w_2} - 20)$ ়া

(∵ পানির আপেক্ষিক তাপ = 4.1868)

📯 আউটলেটে পানির তাপমাত্রা,

$$t_{w2} = \frac{294,000}{1300 \times 4.18680} + 20$$
$$= 54 + 20 = 74^{\circ}C \mid$$

সুতরাং
$$\Delta t_i = (100 - 74) = 26$$
°C:

$$\Delta t_0 = (30 - 20) = 10^{\circ} \text{C}$$

$$\therefore \Delta t_{ro} = \frac{\Delta t_i - \Delta t_0}{\log_e (\Delta t_i / \Delta t_0)} = \frac{26 - 10}{\log_e (26 / 10)} = \frac{16}{\log_e 2.6}$$
$$= \frac{16}{0.9555} = 16.745^{\circ} \text{C (Set)} 1$$

অতএব, তাপ স্থানান্তরের ক্ষেত্রফল

$$A = \frac{Q}{U \Delta t_m} = \frac{.294,000}{4000 \times 16.745} = 4.389 \text{ m}^2 \text{ (Seq.)} \text{ } 1$$

হিট এক্সচেঞ্চারের যে কোন সেকশন থেকে আমরা পাই,

$$m_{oil} \, C_{poil} \, (100-t_{oil}) = m_{water} \, C_{p \ water} \, (74-t_{water})$$

ज्ञाचन,
$$1400 \times 3(100 - t_{oil}) = 1300 \times 4.1868 \times (74 - t_{water})$$

অথবা,
$$(100-t_{cil}) = \frac{1300 \times 4.868}{1400 \times 3} \times (74-t_{water}) = 1.296 \times (74-t_{water})$$

অথবা, (t_{cil} - 1.296 t_{water}) = 100 - 95.9

অতএব, $(t_{oil} - 1.296 t_{water}) = 4.1$ (উন্তর)

> অতি সর্থকিন্ত প্রস্নোচর ঃ

১৷ হিট এক্সচেন্ধার কাকে বলে?

অথবা, উদাহরণসহ হিট এক্সচেকার এর সংভা দাও। অথবা, হিট এক্সচেকার কী কান্ত করে? [বাকাশিবো-২০০৮, ২০১০ (পরি)] [বাকাশিবো-২০০৯, ২০১১]

্রিচর টি এক্সচেপ্তার এমন একটি ডিভাইস, যার মধ্যে দু'টি ভিন্ন তাপমাত্রার প্রবাহীর মধ্যে তাপ স্থানান্তর বা বিনিময় হয়। যেমন—ক্রসফ্রো হিট এক্সচেপ্তার, প্যারাশাল ফ্রো কাউন্টার ফ্রো হিট এক্সচেপ্তার।

২। উদাহরণসহ ডাইরেট কন্টাট হিট এক্সচেকার এর সংজ্ঞা দাও।

্ঠিতর টি পুরাহী সরাসরি সংস্পর্শে এসে যে হিট এক্সচেঞ্চারে তাপ বিনিময় বা স্থানান্তর হয়, তাকে ডাইরেট কেন্টাট্ট হিট এক্সচেঞ্জার বলে।

উদাহরণ ঃ ওয়াটার কুলিং টাওয়ার, **জেট** কভেন্সার ইত্যাদি।

৩৷ রিকিউপারেটর হিট এক্সচেম্বার বলতে কী বুঝার?

্রিষ্টর ট্রা এ হিট এক্সচেক্সারের প্রতিটি বিভক্তকারী দেয়াদের ধার দিয়ে মুগপৎতাবে উত্তপ্ত ও শীতল প্রবাহী প্রবাহিত হয়ে তাপ বিনিময় করে।

৪। রিকিউপারেটর হিট এক্সচেঞ্চারের পাঁচটি উদাহরণ দাও।

ভিচন্ন স্থান্টের কণ্ডেন্সার এবং সুপার্হিটার, রেফ্রিজারেশন ইউনিটের কন্ডেন্সার এবং ইভাপোরেটর, মোটর্যানের রেডিয়েটর ইত্যাদি।

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকডিশনিং–২৩

৫। প্যারাপাল ফ্রো হিট এক্সচেঞ্চার কাকে বলে?

উত্তর ট এতে উত্তপ্ত ও শীতল উভয় প্রবাহী সমান্তরালভাবে একই দিকে প্রবাহিত হয়ে তাপ বিনিষ্ক করে।

৬। কাউন্টার ফ্লো হিট এক্সচেন্ধার কাকে বলে?

😎 🕫 এ হিট এক্সচেঞ্জারে উত্তপ্ত ও শীতল প্রবাহী পরস্পর বিপরীতমুখী হয়ে সমান্তরালভাবে প্রবাহিত হত্তে তাপ বিনিময় করে।

৭। ক্রস ফ্রো থিট এক্সচেগ্রার কাকে বলে?

্ঠিছর 🕝 এ হিট এক্সচেক্তারে উত্তপ্ত ও শীতল প্রবাহী পরস্পরের সাথে সমকোণে (90°) প্রাবাহিত হয়ে ডাপ বিনিম্য করে।

৮। সিবেল পাস থিট এক্সচেপ্তার বলতে কী বুঝার?

্ঠিতর । যে হিট এক্সচেঞ্চারে প্রবাহীর ধারাসমূহ (Streams) একদিকে একবার প্রবাহিত হয়ে তাপ বিনিময় করে, তাকে সিঙ্গেল পাস হিট এক্সচেঞ্জার বলে।

৯। মান্টিপাস হিট একসচেঞ্চার বলতে কী বুঝারঃ

্উতর । যে হিট এক্সচেঞ্চারে প্রবাহীর ধারাসমূহ একাধিকবার এদিক-ওদিক প্রবাহিত হয়ে তাপ বিনিময় করে, তাকে মান্টিপাস হিট এক্সচেঞ্চার বলে।

১০। শেল আভ টিউব টাইপ হিট এক্সচেপ্তার বলতে কী বুঝার?

শেল আছে টিউব টাইপ হিট এক্সচেজারে টিউবের ভিতর দিয়ে একটি প্রবাহিত হয় এবং আর একটি প্রবাহী টিউবের বাহির দিয়ে কিছু শেলের ভিতর দিয়ে প্রবাহিত হয়। শেলের দিকে প্রবাহীর টার্কুলেল সৃষ্টি করার জন্য এবং তাপ বিনিময় বৃদ্ধি করার জন্য সাধারণত বাফল (Baffles) ব্যবহার করা হয়। এটি প্যারালাল বা কাউন্টার ফ্লো হিট এক্সচেজার নয়। এটি মিশ্র প্রবাহ শেল আছে টিউব টাইপ হিট এক্সচেজার।

১১। কমপ্যাই হিট এক্সচেম্বার বলতে কী বুবায়ঃ

উচন ত এ ধরনের হিট এক্সচেজারের টিউবের বাইরের পৃষ্ঠে ফিনস (Fins), পিনদ (Pins) অথবা স্পাইরাল প্রুড (Spiral grooves) থাকে। সাধারণত টিউবের ভেতর দিয়ে তরল প্রবাহিত হয় এবং বাইরের পৃষ্ঠ দিয়ে গ্যাস প্রবাহিত হয় যার তাপ স্থানান্তর গুণাছ কম। একে বিশেষ ধরনের হিট এক্সচেজার বলা হয়।

১২। হিট এক্সচেন্সারে ভাপ স্থানান্তরের হার নির্ণরের সূত্রটি লিব।

ॐडब 🖥

 $Q = UA \Delta t_m I$

যেখানে, U = সার্বিক তাপ স্থানান্তর গুণাঙ্ক

A = হিট এক্সচেঞ্চারের পৃষ্ঠের ক্ষেত্রফল

 $\Delta t_m =$ হিট এক্সচেঞ্চারের দৈর্ঘ্য বরাবর ।

দুটি প্রবাহীর তাপমাত্রা পার্বক্যের গড়মান যা লগ মিন টেম্পারেচার ডিফারেন্স নামে পরিচিত।

লগ মিন বা লগারিদমিক মিন টেম্পারেচার ডিফারেল নির্ণয়ের সূত্রটি লিখ।

অথবা, LMTD-বলতে কী বুঝায়?

[বাকাশিবো-২০১০]

অথবা, লগ মিন টেম্পারেচার ডিফারেল (LMTD) কাকে বলে?

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬]

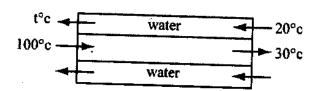
তিহন
$$\delta$$
 $(\Delta t)_{m} = \frac{(\Delta t)_{max} - (\Delta t)_{m}}{\log_e \frac{(\Delta t)_{max}}{(\Delta t)_{min}}}$

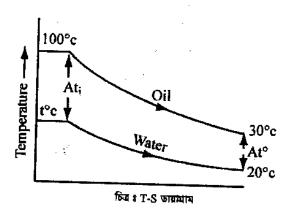
যেখানে, $(\Delta t)_{max}$ এবং $(\Delta t)_{min}$ যথাক্রমে সর্বোচ্চ ও সর্বনিম্ন তাপমাত্রা পার্থক্য।

সংক্ষিদ্ত প্রব্লোচর :

ইট এক্সচেশ্বারের শ্রেণিবিভাগ উল্লেখ কর।
 তথবা, দৃটি হিট এক্সচেশ্বারের নাম শিখ।

[বাকাশিবো-২০০৯]

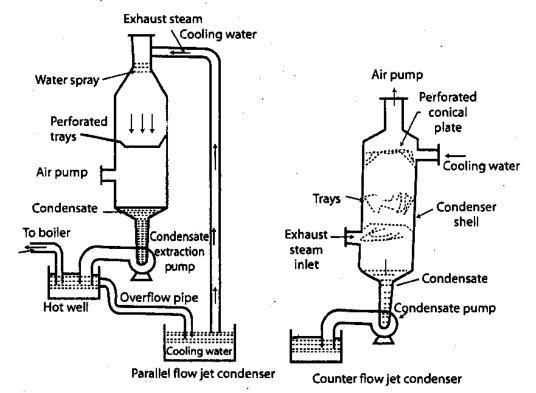

ত্রিতর 🗗 হিট এক্সচেঞ্চারের শ্রেণিবিভাগ উল্লেখ হল–


- (ক) ডিজাইন অনুসারে হিট এক্সচেপ্রার তিন ভাগে ভাগ করা যায়, যথা-
 - ১ ৷ ডাইরেক্ট কন্টাক্ট হিট এক্সচেঞ্জার
 - রজেনারেটর হিট এক্সচেঞ্জার
 - ৩। রিকিউপারেটর হিট এক্সচেঞ্চার।
- উত্তর ও শীতল প্রবাহীর ধরন অনুসারে রিকিউপারেটর হিট এক্সচেঞ্জারকে পাঁচ ভাগে ভাগ করা যায়। যথা-
 - ১। প্যারালাল ফ্লো হিট এক্সচেঞ্জার
 - ২ ৷ কাউন্টার ফ্রো হিট এক্সচেঞ্চার
 - ৩। ক্রস ফ্রো হিট এক্সচেঞ্চার
 - ৪। সিকেল পাস হিট এক্সচেঞ্চার
 - মাল্টিপাস হিট এক্সচেঞ্জার।
- (গ) গঠন অনুসারে হিট এক্সচেঞ্জারকে দু'ভাগে ভাগ করা যায়, যথা-
 - ১। শেল আভ টিউব টাইপ হিট এক্সচেঞ্জার
 - কমপ্যাষ্ট্র বা স্পেশাল টাইপ হিট এক্সচেঞ্জার।
- রিজেনারেটর হিট এক্সচেন্তার বলতে কী বুর্বার?

ঠিছর ছী এ হিট এক্সচেঞ্চারে উত্তপ্ত প্রবাহী প্রথমে কোন মাধ্যমের ভিতর দিয়ে প্রবাহিত হয়। এ মাধ্যমকে ম্যাট্রিক্স (Matrix) বলা হয়। উত্তর প্রবাহী ম্যাট্রিক্স এর ভিতর দিয়ে প্রবাহিত হওয়ায় তা উত্তপ্ত হয় এবং তাপ এতে সঞ্চিত হয়। এ অপারেশনকে হিটিং পিরিয়ড বলে। পরে ঐ উত্তপ্ত ম্যাট্রিক্সের ভিতর দিয়ে শীতল প্রবাহী প্রবাহিত হতে দেয়া হয়। এ অপারেশনকে কৃষিং পিরিয়ড বলে। এভাবে রিজেনারেটর হিট এক্সচেঞ্জার তাপ বিনিময় করে থাকে।

৩। শ্যারাদাল ফ্লো, কাউন্টার ফ্লো এবং ক্রস ফ্লো হিট এক্সচেঞ্চারের চিত্র অঙ্কন কর।

ទីខព ខ


অ্যাডভান্নড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং

700

৪। চিত্রসহ ডাইরেট হিট এক্সচেঞ্চারের বর্ণনা দাও।

ঠিচর ট্রি দু'টি প্রবাহী সরাসরি সংস্পর্লে এসে যে হিট এক্সচেঞ্জারে তাপ বিনিময় বা স্থানান্তর হয়, তাকে ভাইবেট হিট এক্সচেঞ্জার বলে।

উদাহরণ ঃ ওয়াটার কুলিং টাওয়ার, জেট কভেলার ইত্যাদি।

চিত্র ঃ ভাইবেট কণ্টাট্ট এক্সচেক্সার

৫। একটি বিট এক্সচেন্তার ডিজাইন করতে কী কী ক্যান্টর বিবেচনা করা বয়ং বাকানিবো-২০০৩, ০৬, ২০০৭, ২০১০, ২০১২) তথবা, একটি বিট এক্সচেন্তার নির্বাচনে বিবেচ্য বিষয়বলো কী কীং বাকানিবো-২০১৪]

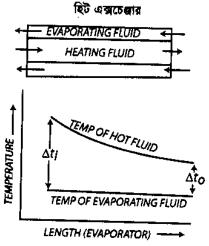
ಶ ভর 🖥 একটি হিট এক্সচেত্রার ডিজাইন করার সময় নিম্নলিখিত বিষয়সমূহ বিবেচনায় রাখতে হবে–

- ১। প্রোজনীয় তাপ ছানান্তর (Heat transfer requirements) ।
- ২ । ব্যয় (Cost) ।
- ৩। সাইজ (Size)।
- 8। প্রেসার ড্রপ (Pressure drop) ।

চিত্রসর্কাউন্টার ফ্রো হিট এক্সচেপ্রারের বর্ণনা দাও।

[বাকাশিবো-২০১২ (পরি)]

ঠভন 🗗 কাউন্টার হো হিট এক্সচেঞ্চার (Counter flow heat exchanger) 🛭


এ হিট এক্সচেঞ্চারে উত্তর ও শীতদ প্রবাহী পরস্পর বিপরীতমুখী হয়ে সমান্তরালভাবে প্রবাহিত হয়ে তাপ বিনিময় করে।

১১.৫ নং চিত্রে কাউণ্টার ক্লো হিট এক্সচেঞ্চার দেখানো হয়েছে। এটি একটি ইভাপোরেটর। চিত্রের উপরের অংশে ফুয়িড

দুটির প্রবাহ এবং নিচের অংশে দৈর্ঘ্য বরাবর তাপ বন্টন দেখানো হয়েছে। এতে একটি ফুয়িডের তাপমাত্রা স্থির থাকে এবং

হিটিং ফুয়িড থেকে সুব্ততাপ গ্রহণ করে তরল থেকে বায়বীয় অবস্থার রূপান্তর হয়।

চিত্র ঃ কাউণ্টার ফ্রো হিট এক্সচেপ্রার

৭। হিট এক্সচেম্বার এর প্ররোজনীয়তা লেখ।

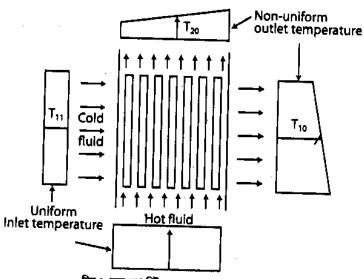
[বাকাশিবো-২০১১]

বিষয়। মূলত রেফ্রজারেশন ও এয়ারকভিশনিং এর ক্ষেত্রে হিট এক্সচেঞ্জার একটি গুরুত্বপূর্ণ বিষয়। মূলত রেফ্রজারেশন ও এয়ারকভিশনিংয়ে হিটিং ও কুলিং কাজে Heat exchange বা তাপ বিনিময় হাড়া কাঞ্জিকত ফলাফল লাভ করা যায় না, আর তাই Heat exchanger-এর মাধ্যমে প্লান্টের ক্যাপাসিটি ও দক্ষতা বৃদ্ধি পায়। তাই হিট এক্সচেঞ্জারের ওক্তত্ব অনেক।

৮। হিট এক্সচেঞ্চারের সাইজ কী কী বিষরের ওপরে নির্ভর করে?

[বাকাশিবো-২০০৯]

38**2**


- ১। প্রয়োজনীয় তাপ স্থানান্তর
- ২৷ ব্যয়
- ও। প্রেসার ড্রপ।
- ৯। ক্রস ক্রো হিট এক্সচেলারের চিক্রসহ প্রকারভেদ লেখ।
 জনবা, ক্রস ক্রো হিট এক্সচেলারের চিত্র অবদ কর।

[বাকাশিবো-২০০৮]

[বাকাশিবো-২০১৫(পরি)]

তিত্র প্রতি এক্সচেপ্রারে উত্তর ও শীতল প্রবাহী পর পরের সাথে সমকোণে (90°) প্রবাহিত হয়ে তাপ বিনিময় করে।

তিত্র ৪ ১১.৭ নং এ একটি ক্রেস ফ্রো হিট এক্সচেপ্রার দেখানো হয়েছে।

চিত্র ঃ ক্রস ফ্রো হিট এক্সচেঞ্চার ও আপমাতার ক্টান

অ্যাডভান্সড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

১০। একটি হিট এক্সচেম্বার ব্যবহারে সুবিধাগুলো শিখ।

[বাকাশিবো-২০০৪]

(শুষ্ঠর 🛭 একটি হিট এক্সচেজ্ঞার ব্যবহারের সুবিধাগুলো নিমুরূপ–

- ্প্লান্টের ক্যাপাসিটি এবং দক্ষতা বৃদ্ধি পায়।
- ওভার অল হিট ট্রাঙ্গফার কোইফিসিয়েন্ট বেশি।
- সহজে রক্ষণাবেক্ষণ করা যায়।
- কম জায়গার প্রয়োজন হয়।
- সহজলভ্য
- হিট ট্রান্সফার দক্ষতা বেশি।

১১। হিট এক্সচেপ্রার এর ব্যবহার দিখা

[বাকাশিবো-২০০৯]

শুভর 🛭 হিট এক্সচেঞ্জার এর ব্যবহার হল–

- IC engine-এ হিট এক্সচেঞ্জার ব্যবহার করা হয় :
- কেমিক্যাল প্লান্টে রাসায়নিক শিল্পকলকারখানায়
- পেট্রোলিয়াম রিফাইনারিতে
- পয়নিষ্কাশন ট্রিটমেন্ট করতে
- নিউক্লিয়ার পাওয়ার প্লাট-এ
- রেফ্রিজারেশন এন্ড এয়ারকন্ডিশনিং –এ
- এরেনিজটিক্যাল (Aemautical) ফ্লিডে ব্যবহৃত হয়।

🕽 त्रञ्वासूनक श्रद्वाविन :

হিট এক্সচেঞ্জার বশতে কী বুঝায়? বিভিন্ন ধরনের হিট এক্সচেঞ্জারের চিত্র অন্ধন পূর্বক কর্ণনা দাও। অথবা, হিট এক্সচেঞ্চারের চিত্র অন্ধন পূর্বক বর্ণনা দাও।

[বাকাশিবো-২০০৯]

[উচর সংক্রেত 📴 অনুচেহণ ১১.৫.৪ ও ১১.৫ নং দুষ্টব্য ।

প্যারালাল ফ্রো কাউটার হিট এক্সচেঞ্চারের প্রবাহীর প্রবাহ ও তাপমাত্রা বন্টনের চিত্রসহ বর্ণনা দাও।

(উভর সহক্তেত 🖁) অনুচেছদ ১১.৫ নং দুষ্টব্য ।

হিট এক্সচেঞ্চারের লগ মিন বা লগারিদমিক মিন টেম্পারেচার ডিফাবেল Δt_{m} -এর সমীকরণ প্রতিপাদন করে দেখাও।

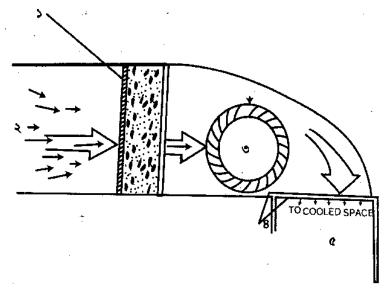
(উত্তর সংক্রেড 🖁 অনুচেহদ ১১.৬.২ নং দ্রষ্টব্য ।

প্যারালাল ফ্রো হিট এক্সাচেঞ্চারের কার্যপ্রণালি বর্ণনা কর।

[বাকাশিবো-২০০৯]

(উচর সহকেত 🖁) অনুচ্ছেদ ১১.৫.৪ নং দুষ্টব্য।

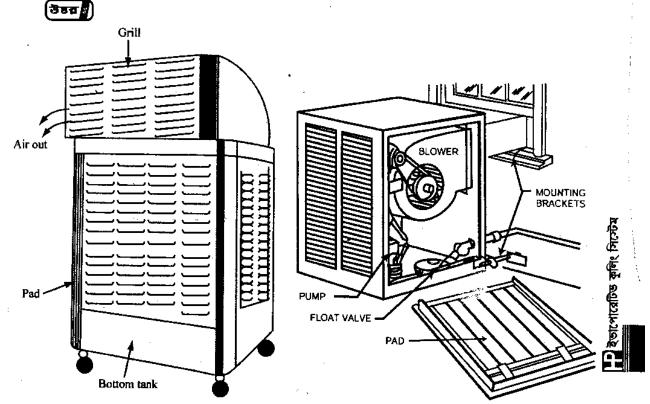
হিট এক্সচেক্সর ডিজাইন করতে বিবেচ্য বিষয়গুলো বর্ণনা কর।


[বাকাশিবো-২০০৭]

(উত্তর সংক্রেন্ড 🗗) অনুচেছদ ১১.৬ নং দুউব্য ।

৭। প্যাড টাইপ ইভাপোরেটিভ কুলার চিত্র অন্তনপূর্বক বিভিন্ন অংশের নাম লেব।

[বাকাশিবো-২০১২ (পরি)]



(১) ভেজা প্যাড, (২) এয়ার ফ্লো, (৩) রোমার, (৪) রোমার মাউব ও (৫) কোন্ড স্পেস।
চিত্র ঃ প্যাড টাইপ ইডাপোরেটিভ কুলার

৮। দুই প্রকার ইভাপোরেটিভ কুলারের চিত্র অঙ্কন কর।

[বাকাশিবো-২০০৪]

চিত্র ঃ পোর্টেবল টাইপ ইভাপোরেটিভ কুলার

চিত্র ঃ উইন্ডো টাইপ ইন্ডাপোরেটিভ কুলার

অ্যাডভান্সড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং-২৫

কুইক ফ্রিজিং এবং সো-ফ্রিজিং এর মধ্যে পার্থক্য কী?। i & অধবা, কৃইক ফ্রিজিং এবং শার্প ফ্রিজিং এর মধ্যে ৪টি পার্থক্য শিব। [বাকাশিবো-২০১২ (পরি), ২০১৪] [বাকাশিবো-২০০৪, ১০]

ভিত্তর টি কুইক ফ্রিজিং এবং স্লো-ফ্রিজিং এর মধ্যে পার্থক্য হল-

ন্নো ফ্রিক্সিং বা শার্প ফ্রিক্সিং	কৃইক ফ্রিঞ্জিং বা রেপিড ফ্রিঞ্জিং	
 প্রাকৃতিক বাতাস অথবা বৈদ্যুতিক ফ্যান দ্বারা ফ্রিজিং করার পদ্ধতিকে শ্রো-ফ্রিজিং বঙ্গে। 	 কুইক ফ্রিজিং এর মাধ্যমে অনেক নিম্ন তাপমাত্রা তৈরি খাদ্যদ্রব্য সংরক্ষণ করা হয়। 	
২। স্মো-ফ্রিজিং এর মাধ্যমে খাদ্যদ্রব্যের রঙ এবং শাদের পরিবর্তন হয় না।	২। কুইক ফ্রিজিং এর মাধ্যমে খাদ্যদ্রব্যের রঙ এবং স্থাদের পরিবর্তন হয়।	
৩। খাদ্যদ্রব্য দির্ঘদিন সংবক্ষণ করা যায় না।	ত। খাদ্য দ্রব্য দির্ঘদিন সংরক্ষণ করা যায়।	
৪। কম খরচে ল্লো-ফ্রিজিং সম্পন্ন করা যায়।	৪। তুলনামূলক বেশি খরচ হয়।	

রচনামূলক প্রস্রাবলিঃ

একটি সাধারণ ইভাপোরেটিভ কুলার-এর গঠন এবং কার্যপদ্ধতি বর্ণনা কর।

উচন সহকেত 🖺 ১২.৫ নং অনুচেছদ দ্ৰষ্টব্য ।

পোর্টেবল টাইপ ইভাপোরেটিভ কুলার-এর চিত্রসহ বর্ণনা দাও। २ ।

উচন সথকেত ৪ ১২.৭ নং অনুচেছদ দ্রষ্টব্য ।

উইভো টাইপ ইভাপোরেটিভ কুলার-এর চিত্রসহ বর্ণনা দাও।

উত্তর সমকেত 🖁 ১২.৫ এর ৫ নং অনুচ্ছেদ দ্রষ্টব্য।

প্যাড টাইপ ইভাপোরেটিভ কুলার-এর চিত্রসহ বর্ণনা দাও। 8 l

[বাকাশিবো-২০১৫(পরি)]

উত্তর সম্প্রকত 🔊 ১২.৫ এর ১ নং অনুচ্ছেদ দ্রষ্টব্য ।

ইভাপোরেটিভ কুদারের ব্যবহার বাংদাদেশে ব্যাপকভাবে প্রসার না ঘটার কারণ কীঃ (t)

উচর সংকেত 🔊 ১২.৮.১ নং অনুচেছদ দুষ্টব্য।

ইভাপোরেটিভ কুলার নির্বাচন এবং ডিজাইনে বিবেচ্য বিষয়গুলো বর্ণনা কর। [বাকাশিবো-২০০৮, ২০০৯, ২০১০ (পরি)]

উন্তর সদক্ষেত 🛭 ১২.৬ নং অনুচেছদ দ্রষ্টব্য ।

একটি ইভাপোরেটিভ কুলার এর গঠন এবং কার্য **পদ্ধ**তি বর্ণনা কর।

[ব্যকাশিবো-২০১০]

অধবা, একটি ইভাপোরেটিভ কুলিং সিস্টেমের চিত্রসহ কার্যপ্রণালি বর্ণনা কর।

[বাঞাশিবো-২০০৯]

উন্তর সংক্রেত s) ১২.৫ নং অনুচেছদ দ্রষ্টব্য ।

এলাইস (Alice) ইভাপোরেটিভ কুলিং এর চিত্র অঙ্কন করে উহার কার্যপ্রণালি বর্ণনা কর।

[বাকাশিবো-২০০৪]

(উত্তর সহক্রেত 💅) ১২.২ নং অনুচেছদ দুষ্টব্য ।

91 ज्ञात्मारद्यीं कृनिः जित्मेय

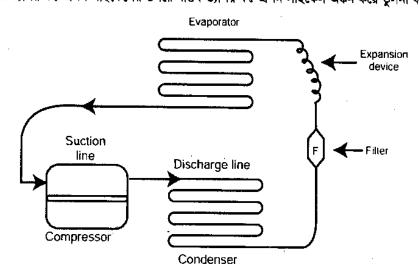
ব্যবহারিক

ध्रत्य खार्छ

- ★ পি-এইচ ভায়াগ্রাম পর্যবেক্ষণকরণ
- ★ পি-এইচ ডায়াগ্রাম ব্যবহার করে সরল বাষ্প সংকোচন পদ্ধতির সমস্যাবলি নির্বয় প্রণালি
- ★ যৌগিক বাষ্প সংকোচন হিমায়ন চক্রের সমস্যাবলি পি-এইচ ডায়ায়ামের মাধ্যমে সমাধানকরণ
- ★ একটি যৌগিক সংকোচন পদ্ধতি তৈরিকরণ
- সৌরতাপ সংগ্রহ পর্যবেক্ষণ করণ
- 🛨 সোলার কুলিং পদ্ধতি পর্যবেক্ষণকরণ
- ★ ইউনিটের মাধ্যমে হিমায়ক স্থানান্তর প্রণালি
- ★ একটি হিমায়ন পদ্ধতির তৈলচার্জকরণ

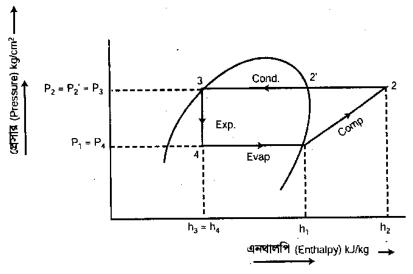
পরীক্ষণ নং-১		তারিখ ঃ
পরীক্ষণের নাম ঃ	পি-এইচ ডায়ামাম পর্যবেক্ষণকরণ (Study the P-H chart)।	

তত্ত্ব ঃ উপ্লম বা খাড়া বা ভার্টিক্যাল অক্ষকে চাপ (Pressure) এবং অনুভূমিক বা সমতল বা হরিজন্টাল অক্ষকে এনথালপি (Enthalpy) বা তাপ (Heat) ধরে P-H গঠন করা হয়।

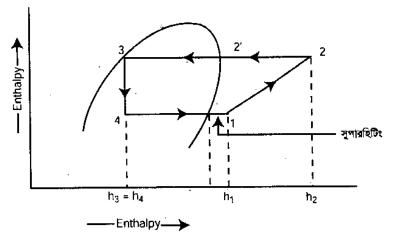

খাড়া বা উরুষ বা ভার্টিক্যাল অক্ষকে চাপ (Pressure) এবং সমতল বা আনুত্মিক বা হরিজন্টাল অক্ষকে এনথালপি বা তাপ ধরে বিভিন্ন কার্ভের মাধ্যমে গঠিত যে লেখচিত্রের মাধ্যমে বিভিন্ন অবস্থায় বা বিভিন্ন ফেজে হিমায়কের তাপগতীয় গুণাবলিগুলো সূক্ষজ্ঞাবে পড়া যায় এবং হিমায়ন যন্ত্রের কার্যকারিতা বা (Performance) তুলনা করা যায় তাকে P-H ভায়াগ্রাম বা প্রেসার এনথালপি ভায়াগ্রাম (Pressure enthalpy-diagram) বলে !

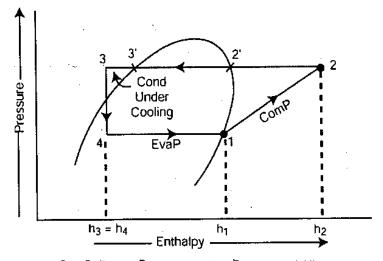
প্রয়োজনীয় যন্ত্রপাতি ঃ

- ১ : গ্রাফ পেপার
- ২৷ পেদিল (2B/HB)
- ৩। কেল(স্টিল রুল)
- ৪ : পেন্সিল কাটার :

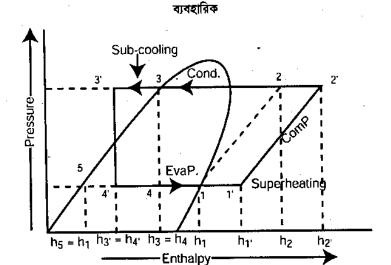

কার্যপ্রপাদি ঃ প্রথমে বাস্প সংকোচন হিমায়ন পদ্ধতির চিত্র অন্ধন করি । তারপর তা হতে ক্রমান্বয়ে—

- ১। স্ট্যান্ডার্ড ভ্যাপর কম্প্রেশন সাইকেল।
- মাকশন সুপার হিটিং কম্প্রেশন সাইকেল।
- ৩। লিকুইড সাব কুলিং ভ্যাপর কম্প্রেশন সাইকেল।
- 8। লিকুইড সাব কুলিং এবং সাকশন সুপার হিটিং ভ্যাপর কম্প্রেশন সাইকেল।
- ক্ট্যাভার্ড ভ্যাপর কম্প্রেশন সাইকেলের উপরে বাস্তব ভ্যাপর কম্প্রেশন সাইকেল অঙ্কন করে তুলনা করি।

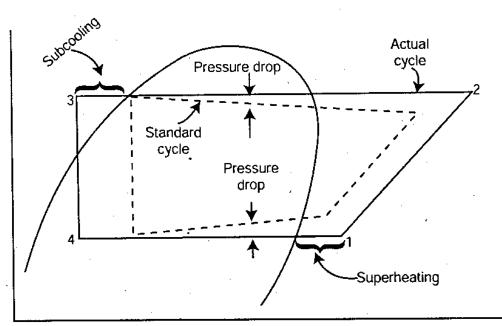



অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

চিত্র ঃ স্ট্যান্ডার্ড জ্যাপার কম্প্রেপন সাইকেলের P-H ভায়ামাম।



চিত্র ঃ সাকশন সুপারহিটিং স্থ্যাপার কম্প্রেশন সাইকেলের P-H ডায়াছামি।



চিত্র ঃ লিকুইড সাবকৃলিং ভ্যাপার কম্প্রেশন সাইকেলের P-H ভায়াগ্রাম।

চিত্র ঃ লিকুইড সাব-কুলিং এবং সাকশন সুপারহিটিং ভ্যাপার কম্প্রেশন সাইকেশের P-H ভায়াঘাম।

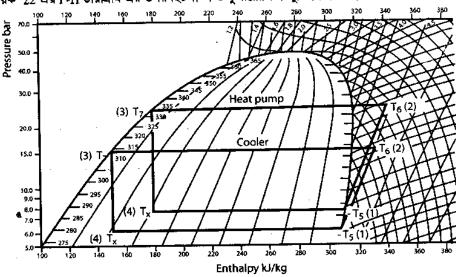
চিত্র ঃ স্ট্যান্ডার্ড জ্যাপার কম্প্রেশনের সাইকেলের উপরে বান্তব জ্যাপার কম্প্রেশন সাইকেলের P-H জায়াগ্রাম।
ফশাফল ঃ আমরা সঠিকভাবে P-H ভায়াগ্রাম অন্ধন করতে পেরেছি এবং প্রতিটি পয়েন্ট এ সঠিকভাবে মার্ক করেছি।
সাবধানতা ঃ

- ১। প্রথমে আমাদের গ্রাফ পেপারের দাগগুলো ঠিকমতো আছে কি না দেখে নিতে হবে।
- ২। প্রতিটি দাগ মাপমতো দিতে হবে।
- খুব সতর্কতার সাথে পেদিল ও স্কেল ব্যবহার করতে হবে।
- ৪ া সর্বদা শিক্ষকের দেওয়া নিয়য় য়তো কাজ করতে হবে ।

পরীক্ষণ নং-২	তারিখ ঃ
পরীক্ষণের নাম ঃ	পি-এইচ ডারায়াম ব্যবহার করে সরশ বাস্প সংকোচন পদ্ধতির সমস্যাবলি নির্ণয় প্রণাদি (Solve problem
	of simple vapor compression cycle using P-H chart).

তত্ত্ব ঃ পি-এইচ চার্ট সম্পর্কে আমরা পরীক্ষণ ১ এ জেনেছি এখন আমরা পি-এইচ চার্টে বাষ্প সংকোচন পদ্ধতির সমস্যাবলি নির্ণয় প্রণালি সম্পর্কে জানবা। বাষ্প সংকোচন বা ভেপার কম্প্রেশন পদ্ধতির হিমায়ন চক্র বিশাদভাবে অধ্যয়ন ও বিশ্লেষণ করার জন্য প্রতিটি হিমায়কের জন্য পৃথকভাবে প্রন্তুত্ত হিমায়ন চক্রের সংকোচন, ঘনীভবন, সম্প্রসারণ ও বাষ্পায়ন প্রক্রিয়ায় চাপ ও তাপীয় যে সমস্ত থার্মোডাইনামিক্স পরিবর্তন ঘটে তা একটি চার্টে বিভিন্ন রেখার মাধ্যে সন্ধিবেশিত করা হয়। উক্ত চার্ট বা রেখাচিত্রকে প্রেসার এনথাদাপি চার্ট বলা হয়।

প্রয়োজনীয় যন্ত্রপাতি ঃ


- ১। গ্রাফ পেপার
- ৪। রাবার
- ২। পেশিল (2B/HB)
- ং। কেল (স্টিল রুল)।
- ৩। পেপিল কাটার

কার্যপ্রণালি ঃ নিচের টেবিলে দেওয়া তাপমাত্রাগুলো হিমায়ক-22 এর P-H ডায়াগ্রাম এ প্রট করে হিটপাম্প ও কুলারের রেফ্রিজারেশন সাইকেল অঙ্কন কর।

College to the College of the Colleg		
তাপমাত্রার স্থান	হিটপাম্প	কুলার
কম্প্রেসর আউটলেট T₅	288°K	279°K
কম্প্রেসর ডিসচার্জ T ₆	353°K	330°K
কন্ডেন্সার আউটলেট T ₇	334°K	313°K
ইভাপোরেটর ইনলেট T ₈	288°K	279°K

সন্ধাৰান আমরা জানি, কভেদারে হিমায়কের ঘনীওবন এবং ইভাপোরেটরে হিমায়কের বাষ্পায়ন বা ইভাপোরেশন সমচাপে ঘটে থাকে। সূতরাং হিমায়কে–22 এর P-H চার্টে সম্পৃক্ত তরল রেখায় কভেদার আউটলেটের তাপমাত্রা এবং সম্পৃক্ত বাষ্প রেখায় ইভাপোরেটরের আউটলেট বা কম্প্রেসরের ইনলেট তাপমাত্রার প্রতিসঙ্গী চাপ নির্ণয় করে হিট পাম্প ও কুলারের জন্যে দুটি করে আনুভূমিক রেখা টানি। T_5 , T_7 এবং T_8 চিহ্ন দিয়ে বিন্দু তিনটি চিহ্নিত করি। T_7 এবং T_8 বিন্দুহয় যোগ করি। T_5 থেকে অতি উত্তও অঞ্চলে সম-এট্রেপি রেখা টানি। T_7 আনুভূমিক রেখাকে T_5 এর সম-এট্রেপি রেখা যে স্থানে ছেদ করবে সে বিন্দুটি T_6 হারা চিহ্নি করি।

চিত্রে হিমায়ক-22 এর P-H ডায়াগ্রাম এর উপর হিটপাস্প ও কুলারের চক্র দৃটি দেখানো হল-

চিত্র ঃ হিমায়ক-22 এর P-H ভায়ামাম এর উপর হিটপাম্প ও কুলারের হিমায়ন চক্র ।

ফলাফল ঃ আমরা সঠিকভাবে আমাদের গ্রাফ থেকে মান সংগ্রহ করেছি। অতএব আমাদের গ্রাফ সঠিক হয়েছে। সারধানতা ঃ

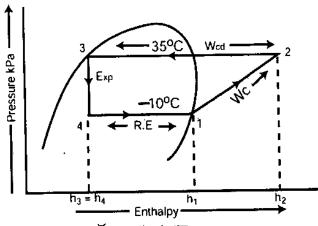
- ১। গ্রাফ পেপার এর কাজ অত্যম্ভ সৃক্ষভাবে করতে হবে।
- মানের যেন কম বা বেশি না হয়।
- ৩। গ্রাফ পেপার এর মান সঠিকভাবে নির্ণয় করতে হবে।

পরীক্ষণ নং-৩	তারিব ঃ
পরীক্ষণের নাম ঃ	যৌণিক বাস্প সংকোচন হিমায়ন চক্রের সমস্যাবলি পি-এইচ ডান্নামামের মাধ্যমে সমাধানকরণ (Solve
	problems of compound vapour compression cycle using P-H chart).

তত্ত্ব ঃ এখান থেকে আমরা পি-এইচ চার্ট ব্যবহার করে সমস্যা সমাধান করার পদ্ধতি সম্পর্কে জানতে পারবো। পরীক্ষণ-১, পরীক্ষণ-২, এ পি-এইচ সম্পর্কে আমরা জ্ঞান অর্জন করেছি।

প্রয়োজনীয় যত্রপাতি ঃ 🕡

- ১ া পি-এইচ (P-H) ভায়াগ্রাম
- ২। ক্যালকুলেটর।


কার্যবাদি ঃ হিমায়ক-22 ব্যবহার করে 50 kW ক্ষমতার একটি যৌগিক ভ্যাপার কম্প্রেশন সাইকেল 35°C কন্ডেলিং ভ্যাপারায় এবং – 10°C ইভাপোরেশন তাপমাত্রায় পরিচালিত হচ্ছে।

নির্ণয় করতে হবে-

- ১। রেফ্রিজারেটিং ইফেষ্ট (R. E)।
- ২। কম্প্রেসরের ক্ষমতার পরিমাণ।
- ৩। কো-ইফিসিয়েন্ট অব পারফরমেন্স (COP)।
- ৪। কন্দ্রেসর সাকশনে হিমায়কের আয়তন।
- প্রতি KW রেফ্রিজারেশনের ক্ষমতা।
- ৬। কম্প্রেসরের নির্গমন তাপমাত্রা।

त्रमाधाव 🖁

উপরোক্ত মানগুলো হতে P-H ডায়াগ্রামে বসিয়ে এনখালপি এবং হিমায়কের আয়তন নির্ণয় করি। যা চিত্রে দেখানো হল ঃ

Wc = Work done by compressor

Wcd = Work done by condenser

 $E_{xp} = E_{xpensation}$

R.E = Refrigeration Effect.

P-H ভায়াগ্রাম বা চার্ট হতে পাওয়া গেল-

 $h_1 = 246.5 \text{ kJ/kg}.$

 $h_2 = 280 \text{ kJ/kg}.$

 $h_3 = h_4 = 88 \text{ kJ/kg}.$

কম্প্রেসর সাকশনের হিমায়কের আয়তন, $V_1 = 0.065 \text{ m}^3/\text{kg}$.

১। রেফ্রিজারেটিং ইফেস্ট, R.E = h₁ – h₄

= 246.5 - 88

= 158.5 kJ/kg.

আডভাঙ্গড রেফ্রিজারেশন আন্ড এয়ারকজ্বিশনিং–২৬

২। হিমায়কের প্রবাহ হার =
$$\frac{50}{15.85}$$

= 0.315 kg/sec.
৩। কম্প্রের ক্ষমতা = 0.315 (280 – 246.5)
= 10.6 kW.

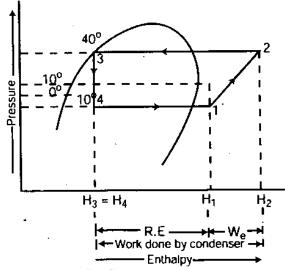
8 +কো-ইঞ্চিসিয়েন্ট অব-পারঞ্চরমেন্স, (COP) = $\frac{50}{10.6}$

..
$$COP = 4.72$$

Q । কম্প্রেসর সাকশনে প্রবাহিত হিমায়কের আয়তন = 0.315×0.065 = $0.0205 \text{ m}^3/\text{sec}$ = 20.5 V/sec

৬। রে**ফ্রিজারেশন ক্ষম**তা =
$$\frac{10.6}{50}$$

= 0.212 kW


৭। বিন্দু-২ এ অতিতাপিত গ্যাস এর তাপমাত্রা 57°C (সাইক্রোমেট্রিক চার্ট হতে)

সমস্যাবলি : হিমায়ক 134 a ব্যবহৃত একটি হিমায়ক যন্ত্রের বাস্পীশুবন তাপমাত্রা — 10°C এবং ঘদীশুবন তাপমাত্রা 40°C সাকশন লাইনে 10°K সুপার হিট হলে, নির্ণয় করতে হবে ঃ

- 🕽 । রেফ্রিক্সারেটিং ইফেক্ট (R.E) ।
- ২। কম্প্রেসর কর্তৃক কাজ।
- ৩। কো-ইফিসিয়েন্ট অবপারক্ষরমেন্স (COP)।

সমাধাৰ 🕏

প্রথমে বাস্পীতবন, ঘনীতবন ও সুপারহিট তাপমাত্রা দিয়ে P-H ডায়াঘাম অন্ধন করি ৷

হিমায়ক 134a এর মানগুলো P-H চার্ট হতে নির্ণয় করি।

২। কম্প্রসর কর্তৃক কাজ
$$(W_c) = h_2 - h_1$$
.
 $= 350 - 310$
 $= 40 \text{ kJ/kg}$.

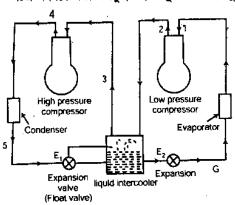
৩। কো-ইফিসিয়েণ্ট অবপারকরমেন্স (COP) = $\frac{R.E}{W_c} = \frac{150}{40} = 3.75$

ফলাফল ঃ আমাদের সমস্যার সমাধান সঠিক হয়েছে। অতএব, চার্ট থেকে মানগুলো সংগ্রহ করা সঠিক ছিল। সতর্কতা ঃ

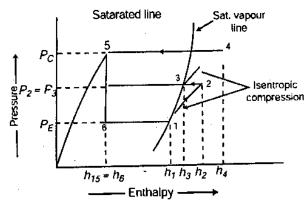
- ১। চার্ট থেকে মান সংগ্রহ করার সময় অত্যন্ত সর্তকতার সাথে নিতে হবে।
- ২। ক্যালকুলেশন নির্ভুলভাবে করতে হবে।
- ৩। পুনরায় ক্যালকুলেশন করতে হবে।

পরীক্ষণ নং-৪	তারিব ঃ
পরীক্ষণের নাম ঃ	একটি যৌগিক সংকোচন পদ্ধতি তৈরিকরণ (Build up a compound compression system)।

তত্ত্ব ঃ এই পরীক্ষণের মাধ্যমে আমরা সংকোচন পদ্ধতি তৈরিকরণ বাস্তবসম্মত জ্ঞান অর্জন করবো। কম্পাউন্ড ভ্যাপার কম্প্রেশন পদ্ধতিমূলক যৌগিক সংকোচন প্রক্রিয়া সম্পন্ন করে। যৌগিক সংকোচন হিমায়ন পদ্ধতিতে ইন্টারকুলারের সমন্বয়ে গঠিত।


প্রয়োজনীয় যন্ত্রপাতি ঃ

- ইন্টারকুলারসহ রেফ্রিজারেশন সিস্টেম ইউনিট।
- ২। স্লাইড রেঞ্জ।


কার্বপ্রধালি ঃ মান্টিস্টেজ ডেপার কম্প্রেশন পদ্ধতিতে দু'টি কম্প্রেসরের মধ্যে 'ইন্টারকুলার' ব্যবহার করা হয়। প্রথম কম্প্রেসরে হিমায়ক সংকোচন করার পর দ্বিতীয় কম্প্রেসরে সংকোচন করার পূর্বে হিমায়কের কিছুটা শীতল করাই ইন্টারকুলারের কাজ। নিচে ইন্টারকুলার ব্যবহৃত বিভিন্ন মান্টিস্টেজ ডেপার কম্প্রেশন পদ্ধতি দেয়া হল-

- ১। লিকুইড ইন্টারকুলার ব্যবহৃত দুই ধাপে সংকোচন (Two stage compression)।
- ২। ওয়াটার ইন্টারকুলার দুই ধাপে সংকোচন।
- ৩। ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার এবং লিকুইড ফ্লাশ চেম্বার ব্যবহৃত দু'ধাপে সংকোচন।
- ৪ । ওয়াটার ইন্টারকুলার, লিকুইড সাবকুলার এবং ফ্লাশ ইন্টারকুলার ব্যবহৃত দু'ধাপে সংকোচন।
- ক্রাশ ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।
- ্ড। ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।
- ৭! ফ্লাশ চেম্বার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি।

চিত্র এ নিমে একটি লিকুইড ইন্টারকুলার ব্যবহৃত টু স্টেজ কম্প্রেলন পদ্ধতির প্রবাহ চিত্র এবং প্রেসার এনধাঙ্গলি ভায়াগ্রাম দেয়া হল।

্ চিত্র ঃ লিকুইড ইন্টার কুলারসহ বাস্প সংকোচন পদ্ধতি

কর্শনা z প্রথমে লো-প্রেসার কম্প্রেসর থেকে সংকৃতিত সুপারহিটেড ভেপার প্রিকৃইড ইন্টারকুলারে পাঠায়। অপরদিকে কন্ডেসার থেকে আগত তরল হিমায়ক এক্সপানশন ভাল্ড (E_1) যারা প্রবাহ নিয়ন্ত্রিত হয়ে পিকৃইড ইন্টারকুলারে আসে। এক্সপানশন ভাল্ড (E_1) মূলত প্রোটল ভাল্ড হিসাবে কান্ড করে ইন্টারকুলারে একটি নির্দিষ্ট পিকৃইড লেবেল বজায় রাখে পিকৃইড ইন্টারকুলারে তরল হিমায়ক আংশিক বাম্পায়নের মাধ্যমে লো প্রেশার কম্প্রেসর থেকে আগত সুপারহিটেড হিমায়ককে কিছুটা শীতল করে একই চাপে সেচুরেটেড ভেপার হিমায়কে পরিণত করার পর হাইপ্রেসার কম্প্রেসরে প্রেরণ করে। হাইপ্রেসার কম্প্রেসর পিকৃইড ইন্টারকুলার থেকে আগত বাম্পায়িত হিমায়ককে সংকোচন ক্রিয়ার মাধ্যমে চাপ ও তাপ বৃদ্ধি করে কন্ডেসারে পাঠিয়ে দেয়।

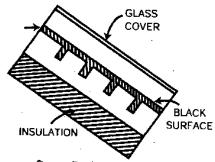
মান্টিস্টেজ বা কম্পাউত কম্প্রেশন পদ্ধতিতে লিকুইড ইন্টারকুলার ব্যবহারের ফলে কম্প্রেসরের কাজ কম লাগে। ফলে COP বৃদ্ধি পায়।

ফ্লাফ্ল ঃ আমরা প্রতিটি ডিভাইস এর সঠিকডাবে সংযোগ পদ্ধতি নির্ণয় করে দেখলাম সংযোগ সঠিক হয়েছে। এ থেকে আমরা অনেক বাস্তবসম্মত জ্ঞান অর্জন করলাম।

সাবধানতা ঃ

- 🔾 । পুব সতর্কতার সহিত এই কাজটি করতে হবে।
- ২। সম্পূর্ণ কাজে শিক্ষকের পরামর্শ মতো করতে হবে।
- ৩। যন্ত্রপাতিগুলো সতর্কতায় সহিত নাড়াচাড়া করতে হবে।

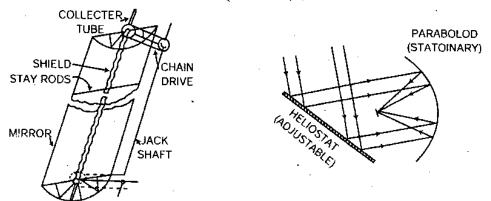
পরীক্ষণ নং-৫		তারিখ ঃ
পরীক্ষণের নাম ঃ	সৌরভাপ সংগ্রহ পর্যবেক্ষণ করণ (Study the solar heat collection) i	


ভদ্ধ ঃ এই পরীক্ষণের মাধ্যমে আমরা সৌরশক্তি সংগ্রহ করার পদ্ধতিসমূহ জানতে পারবো। সৌর তাপকে সংরক্ষণ করে কোন নির্দিষ্ট ছান বা রুমকে হিটিং করার পদ্ধতিকে সোলার হিটিং পদ্ধতি বলে।

প্রয়োজনীর যম্বপাতি ঃ

- ১। ফ্র্যাট প্লেট কালেক্টর।
- ২। প্যারাব্যেশিক কালেক্টর, ইত্যাদি।

কার্যবাদি ঃ পৃথিবীর গায়ে যে সৌরতাপ পাওয়া যায় তা কারিগরি কোন কাজে লাগানো যায় না। এ তাপ কোন কালেক্টরে প্রথমে সংগ্রহ করা হয়। তারপর তা সঞ্চালনের মাধ্যমে কাজে লাগানো যায়। এ উদ্দেশ্য সম্পাদনের জন্য সোলার হিট কালেক্টরের উদ্ভাবন করা হয়। সোলার হিট কালেক্টর পাঁচ ধরনের—


ফ্রাট প্লেট কালেষ্টর (Flat plate collector) ই ফ্রাট প্লেট কালেষ্টরের তলায় ধাতু নির্মিত টিউব বা প্লেট থাকে। এ প্লেটের নিচে তাপ প্রবাহ প্রতিরোধী থার্মোফাম/পলিপ্ররেথিন থাকে। প্লেটের উপর কালো রঙ হয় এবং প্লেটের ভিতরে পানি বা অন্য কোন প্রবাহ রাখা হয়। প্লেটের উপর কিছু ফাঁকা রেখে এক বা দুই স্তর বিশিষ্ট গ্লাস প্যানেল বসানো হয়। শোষক, ইন্সুলেশন এবং গ্লাস প্যানেল একত্রে একটি ধাতব ফ্রেমে আটকানো থাকে। এর সাথে পানি প্রবেশ এবং নির্গমনে সংযোগ থাকে। হিট কালেষ্ট্রেরে মাধ্যমে বায়ুকে উত্তও করার কাজে ব্যবহৃত হলে তাপ শোষকের সাথে ফিল থাকে।

চিত্র ঃ ফ্রাট প্লেট কালেক্টরের প্রচ্ছদ চিত্র

ফ্র্যাট প্লেট সংগ্রাহক গঠনে খুবই সহজ এবং সস্তা। কনসেনট্রেটিং কালেক্টর এর তুলনায় অধিক পরিমাণ বিদীর্ণ তাপ সংগ্রহ করতে পারে। আরও সুবিধা যে, এটা ঠাঙা বা গরম করার কাজে ব্যবহৃত হয়। উত্তপ্ত করাই প্রধান উদ্দেশ্য হলে সমভূমি থেকে লেটিচুড অ্যাঙ্গেল এর চেয়ে 10 থেকে 20 ডিগ্রী বেশি কোণে স্থাপন করতে হয়।

চিত্র ঃ প্যারাবোলিক কালেন্টর

ফলাফল ঃ আমরা দেখতে পেলাম প্রবেশকৃত পানি বা বায়ু অপেক্ষা নির্গমন পানি বা বায়ু উত্তপ্ত হয়েছে ৷

সাবধানতা ঃ

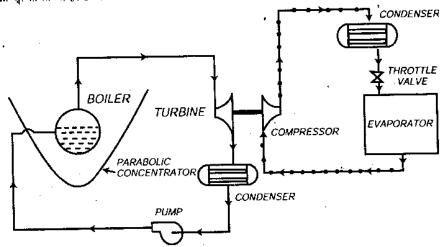
- প্রতিটি কালেয়রকে সতর্কতা সহিত নড়াচড়া করতে হবে।
- ২। সমতল বা মসৃণ জায়গায় স্থাপন করতে হবে।
- স্থের তাপ লাগে এমন জায়গায় ছাপন করতে হবে ।

পরীক্ষণ নং-৬		তারিখ ঃ
পরীক্ষণের নাম ঃ	সোলার কুলিং পদ্ধতি পর্যবেক্ষণকরণ (Study the solar cooling system)।	

তত্ত্ব ৪ এই পরীক্ষণের মাধ্যমে আমরা সোলার কুলিং পদ্ধতি সম্পর্কে বাস্তব জ্ঞান অর্জন করতে পারবো। সোলার অর্থ সৌর বা সূর্য এবং কুলিং অর্থ ঠাণ্ডা বা শীতলীকরণ প্রণালি। সৌরশক্তি ব্যবহার করে কুলিং প্রক্রিয়াকরণ মাধ্যমে বাষ্পা সংকোচন ও বাষ্পা শোষণ উভয় পদ্ধতি ব্যবহার করা যায়।

প্রয়োজনীয়তা বন্ধপাতি ঃ

- রেফ্রিজারেশন ইউনিট
- ২। সোলার প্যানেল, ইত্যাদি।


কার্যপ্রণালি ঃ সৌরশক্তির মাধ্যমে হিমায়ন সম্ভব। বেশ কয়েকটি পদ্ধতিতে এ কাজ করা হয়। তবে প্রধানত যে পদ্ধতিগুলো ব্যবহার করা হয় তা হল—

- ১। বাষ্প সংকোচন পদ্ধতি (Vapor Compressor system)
 - (ক) পানি বাস্পের মাধ্যমে কমপ্রেসর চালনা
 - (খ) বিমায়ক চালনা (র্য়াংকিন সাইকেল)
- ২। শোষণ পদ্ধতি (Absorption system)
 - (ক) অনবরত শোষণ পদ্ধতি (Continuous absorption system)
 - (খ) কঠিন শোষকের মাধ্যম (Solid absorption system)।

বাষ্পাসংকোচন পদ্ধতি (Vapor compression system) ই

সৌরশক্তির সাহায্যে বাষ্প সংকোচন এবং বাষ্প শোষণ উডয় পদ্ধতিই ব্যবহার করা যায়। বাষ্প সংকোচন পদ্ধতিতে সনাতন পদ্ধতির মোটরের পরিবর্তে কম্প্রেসর চালানোর জন্য স্টিম টারবাইন ব্যবহার করা হয়। কম্প্রেসর চালানো গেলে বাকি উপাংশগুলো শাভাবিক কাজ করে। সৌর তাপে পানি বাষ্প তৈরি হয়। আর সে বাষ্পের চাপে টারবাইন চলে যা কম্প্রেসরকে চালনা করা হয়। টারবাইন থেকে নির্গত পানি বাষ্প কন্ডেনারে ঘনীভূত হয়। আর পাষ্প সেই তরল আবার বয়লারে পাঠায়। এক্ষেত্রে খুব শক্তিশালী প্যারাবোলিক কনসেনট্রেটর ব্যবহার করা হয়। যাতে প্রচুর তরল পানিকে বাষ্পে পরিণত করা যায়। যখন সৌর তাপ পাওয়া না যায় তখন একই বয়লারে জ্বালানির সাহায্যে বাষ্প তৈরি করে অথবা একটি স্ট্যান্ডবাই বৈদ্যুতিক মোটরের সাহায্যে কম্প্রেসরকে চালানো হয়।

চিত্র ঃ সৌরশক্তির মাধ্যমে চালিত বাস্প সংকোচন পদ্ধতি

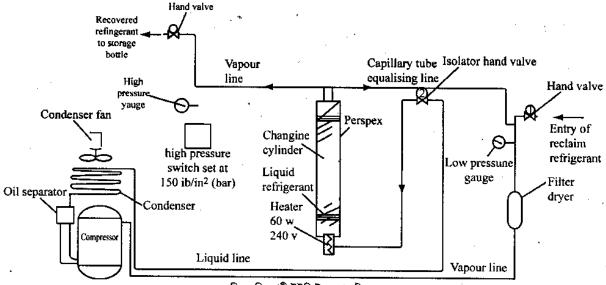
চিত্রে তিনটি বর্তনী দেখানো আছে। ১নং বর্তনীতে সোলার কালেষ্টরের মাধ্যমে পানিকে উত্তপ্ত করা যায়। আর সেই গরম পানি বাস্পের সাহায্যে ২নং বর্তনীর রেফ্রিজারেন্ট ভেপার বয়লারে সঞ্চালন করা হয়। সৌরশক্তির অভাবে বিকল্প ব্যবস্থা হট ওয়াটার বয়লারের মাধ্যমে তাপ প্রয়োগ করা হয়। ৩নং বর্তনী কীভাবে কাজ করে তা আমাদের জানা আছে। এ পদ্ধতির সাহায়্যে বিদ্যুৎ শক্তির ব্যবহার হাস করা যায় কিন্তু পরিহার করা যায় না।

ফলাফল ঃ পরীক্ষণ শেষে আমরা পর্যবেক্ষণ করলাম যে সোলার এর মাধ্যমে কুলিং পদ্ধতি চালানো সম্ভব।

সতর্কতা ঃ এই পদ্ধতি অনেক সময় নিয়ে এবং অনেক সতর্কতায় সহিত পরিচালনা করতে হবে, খেয়াল রাখতে হবে প্যানেল যেন সূর্যের আলোময় এমন স্থানে বসানো হয়।

	পরীক্ষণ নং-৭	তারিখ ঃ
E	পরীক্ষণের নাম ঃ	ইউনিটের মাধ্যমে হিমায়ক স্থানান্তর প্রণালি (Refrigerant recovery at a unit)।

তত্ত্ব ঃ এই পরীক্ষণের মাধ্যমে আমরা হিমায়ক স্থানান্তর প্রণালি সম্পর্কে বাস্তব সমতে জ্ঞান অর্জন করতে পারবো। CFC গ্যাস ওজন (O₃) স্তরের জন্য মারাত্মক ক্ষতি সাধন করে। CFC হিমায়ক ওজন স্তরের জন্য ক্ষতিকারক বিধায় হিমায়ন চক্রের CFC এবং HCFC হিমায়ক বাতাসে নিঃসৃত না করে কোন প্রক্রিয়ায় অন্যত্র সংগ্রহকরণকে পুনঃলাভ বা রিকোভারী বলে।


প্রয়োজনীয় যন্ত্রপাতি ঃ

- ১। ভ্যাকুয়াম পাম্প
- ২। সিলিভার
- ৩। ব্রিকডারী ইউনিট।

কার্যপ্রণাশি ঃ রিকোভারী ইউনিটের সাহায্যে কোন হিমায়ক বা রেফ্রিজারেন্ট কোন হিমায়ন ইউনিট হতে রেফ্রিজারেন্ট সার্ভিস সিলিভারে স্থানাস্তরের পদক্ষেপসমূহ হল ঃ

- ১। ভাাকুয়াম পাম্পের সাহায্যে রিকোভারী ইউনিটের বায়ুশূন্যতা করে নিতে হবে।
- ২। যে ইউনিট থেকে হিমায়ক স্থানান্তর করতে হবে সে ইউনিটের সাথে রিকোভারী ইউনিটের সাকশন ভালভ (১) সংযোগ করতে হবে এবং সামান্য চার্জিং করে চার্জিং হোজ বায়ুশূন্য করতে হবে 1
- ৩। রিকোভারী ইউনিটের সাকশন ভাল্ড (১) খুলে রিকোভারী সিস্টেমে হিমায়ক প্রবেশের সুযোগ দিতে হবে ।

চিত্র ঃ রিকভারী ইউনিটের প্রবাহ চিত্র।

- 8। মাঝের হ্যান্ড ভাল্ভ (২) খুলে হিমায়ক চার্জ সিলিন্ডারে স্থানান্তরের সুযোগ দিতে হবে। হাইপ্রেসার হ্যান্ড ভাল্ড (৩) খোলা যাবে না। কম্প্রেসর চালু অবস্থায় এ ভাল্ড বন্ধ রাখতে হবে।
- রিকোভারী ইউনিটের ফ্যান এবং কম্প্রেসার চালু রাখতে হবে।
- ৬। লো-প্রেসার গেজ ও SPSI চাপ দাঁ দেখানো পর্যন্ত বা চার্জ সিলিন্ডারের সর্বোচ্চ লেভেল পর্যন্ত হিমায়ক স্থানান্তর না হওয়া পর্যন্ত কম্প্রেসর চালু রাখতে হবে।
- ৭। সাকশন হ্যান্ড ভাল্ভ (১) ফ্যান এবং কম্প্রেসর বন্ধ করার পর পরই মাঝের হ্যান্ড ভাল্ভ (২) বন্ধ করে দিতে হবে।
 [রিকভারী করা হিমায়ক চার্জ সিলিভারে কম সময়ের জন্য জমা রাখা যাবে। যেহেতু ইকুইলাইজিং লাইন (ক্যাপিলারি
 টিউব) দিয়ে সিস্টেমের লো-প্রেসার সাইডের হিমায়ক স্থানান্তরের সুযোগ আছে। তাই যথাসম্ভব তাড়াতাড়ি চার্জ সিলিভার থেকে হিমায়ক সার্ভিস সিলিভারে স্থানান্তর করা দরকার।]
- ৮। যে ধরনের হিমায়ক স্থানান্তর করতে হবে, সার্ভিস সিলিভারটি সে ধরনের কি না এবং হিমায়ক স্থানান্তরের উপযোগী কি না তা নিশ্চিত হতে হবে। যদি সার্ভিস সিলিভারটি সঠিক প্রকৃতি ও মানের হয় তবে সিলিভারটি খালি কি না তা পরীক্ষা করতে হবে। যদি খালি হয় তবে তা বায়ুশুন্য করে নিতে হবে।
- ৯। সার্ভিস সিনিভার এবং হাই-প্রেসার হ্যান্ড ভাল্ভ (৩) এর মধ্যে চার্জিং হুজ (hose) এর সংযোগ সামান্য ঢিলা করে এবং হাইপ্রেসার হ্যান্ড ভাল্ভ (৩) সামান্য খুলে সংযোগকারী হুজ সামান্য পার্জ করে নিতে হবে।
- ১০। সার্ভিস সিলিভারের কোন হিমায়ক স্থানান্তরের পূর্বে ঐ সিলিভারের ওজন রেকর্ড করতে হবে এবং কী পরিমাণ হিমায়ক ঐ সিলিভারে ছানান্তর করা সম্ভব তা নির্ধারণ করতে হবে।[সিলিভারের ক্ষমতার ৭০% হিমায়ক নিরাপদে ছানান্তর করা যায়।]
- ১১। রিকোভারী ইউনিটের হাইপ্রেসার হ্যান্ত ভাপ্ত (৩) এবং সার্ভিস সিলিভারের ভাল্ভ খুলে দিলে গ্যাস স্থানান্তরের শব্দ (Sound) শোনা যাবে।
- ১২। সার্ভিস সিলিভারে তার ক্ষমতার ৭০% হিমায়ক স্থানান্তর না হওয়া পর্যন্ত এবং হিমায়ক স্থানান্তরের শব্দ যতক্ষণ শোনা যাবে ততক্ষণ পর্যন্ত গ্যাস স্থানান্তর চালিয়ে যেতে হবে।
- ১৩। সার্ভিস সিন্দিভার ভাল্ভ এবং রিকোভারী ইউনিটের সার্ভিস ভাল্ভ (৩) বন্ধ করে দিতে হবে।

- ১৪। যদি সার্ভিস সিলিভারে জায়গা থাকে এবং চার্জ সিলিভার এ যদি আরও হিমায়ক অবশিষ্ট থাকে তবে ৬০ গুয়াট এর হিটারটি কয়েক মিনিট অন করে রাখতে হবে। সিতর্কতার সাধে হাইপ্রেসার রিডিং বাড়ছে কি না তা পর্যবেক্ষণ করতে হবে। যদি প্রেসার 100 PSI-এ পৌছে তবে হিটারটি বন্ধ করে দিতে হবে 🖠
- ১৫। লিকুইড রিসিভার বা চার্ক্স সিলিভারে পর্যান্ত চাপ সৃষ্টি হলে চার্ক্স সিলিভার ভাল্ভ (৩) এবং সার্ভিস সিলিভার ভাল্ভ খুলে দিলে পুনরায় সার্ভিস সিলিন্ডারে হিমায়কের শব্দ শোনা যাবে । [হিমায়ক স্থানান্ডরের গতি বৃদ্ধি করার জ্বন্যে সার্ভিস সিলিন্ডার বরক্ষ মিশ্রিত পানিতে রেখে ঠাতা করলে তাপমাত্রার পার্থক্য বৃদ্ধি পাবে এবং হিমায়ক দ্রুত রিক্ডারী হবে।]
- ১৬। রিক্ডারী সম্পনু হলে প্রথমে হাইপ্রেসার হ্যান্ড ভাল্ড (HV) বন্ধ করতে হবে এবং পরে সার্ভিস সিলিডার হ্যান্ড ভাল্ড বন্ধ করতে হবে। এতে চার্জিং হোক্সে সর্বনিম্ন পরিমাণ হিমায়ক ঘাটতি হবে।
- ১৭। রিকভারী সম্পন্ন হবার পর বাইরের বাতাস সিস্টেমে প্রবেশ করবে এবং সিস্টেমের বায়ুশ্ন্যতা নট্ট হয়ে যাবে। সিস্টেম বায়ুশূন্য অবস্থায় থাকলেও লো এবং হাইপ্রেসার গেছে সামান্য পাঠ নির্দেশ করতে পারে।
- ১৮। ভাল্ভ ৩ এবং ১-এ ভাল্ভ কভার স্থাপন করে সামান্য টাইট দিতে হবে যাতে অবশিষ্ট হিমায়ক লিক করে বের হতে না পারে বা বাইরে থেকে বাতাস বা জলীয়কণা সিস্টেমে প্রবেশ করতে না পারে।

ফলাফল ঃ আমরা সঠিকভাবে হিমায়ক স্থানান্তর করতে পেয়েছি।

- ১। সর্তকতার সাথে রিকভারী ইউনিটের পাইপিং কানেকশন চেক করতে হবে যাতে হিমায়ক বের না হয়ে যায়।
- ২। এই কারু করার সময় খুব সর্তক থাকতে হবে যাতে CFC গ্যাস আমাদের ক্ষতি করতে না পারে।

		তারিখ ঃ
1	পরীক্ষণ নং-৮ —-	- frigoration system)
١	পরীক্ষণের নাম ঃ	একটি হিমারন প্রতির তৈলচার্জকরণ (Oil charge in a refrigeration system) ।

ভল্ক ঃ এই পরীক্ষণের মাধ্যমে আমরা হিমায়ন পদ্ধতির তৈলচার্জকরণ প্রক্রিয়া বাস্তব সম্মত জ্ঞান অর্জন করতে পারবো। ছোট ইউনিট তেল পরিবর্তন করে বড় ইউনিট তেল ও এক্সপানশন ভাষ পরিবর্তন করে গ্যাস চার্জ্ক করা যায়।

প্রয়োজনীয় বন্ধপাতি ঃ

- 🔰 পরিমাণমতো তৈল।

 রেফ্রিজারেশন ইউনিট ইত্যাদি। কার্বশ্রণালি ঃ আধুনিক গ্যাসের সাথে আধুনিক তেল চার্জ করতে হয়। নতুন এ গ্যাসের সাথে পুরানো তেলের বিক্রিয়া ঘটে। তাই যখনই গ্যাসের পরিবর্তন করা হয়, তখনই তেলে পরিবর্তন করা হয়। তেল পরিবর্তনের ধাপগুলো হল—

- ১। সিল্ড বা হারমেটিক কম্প্রেসরের বেলায় এবং গ্যাস থাকলে তা পুনঃলাভ করতে হবে এবং কম্প্রেসর ইউনিট থেকে পৃথক করতে হবে। ওপেন টাইপ ইউনিটের বেলায় উভয় ভালভ বন্ধ করতে হবে।
- ২। তেল ড্রেন করতে হবে।
- ৩। নতুন তেল ভর্তি করতে হবে।
- কন্ত্রেসর চালু ও বন্ধ করতে হবে। এরপ কয়েরকবার করতে হবে।
- 🕐 । তেল আবার ড্রেন করতে হবে।
- ৬। আবার নতুন তেশ ভর্তি করতে হবে।
- ৭। সিন্ড কমপ্রেসর ইউনিটে লাগাতে হবে। ওপেন ইউনিটে ভালভ খুলতে হবে।

ফলাকন ঃ আমরা আমাদের পরীক্ষণ শিক্ষকের সাহায্যে সঠিকভাবে সম্পন্ন করতে পেয়েছি ।

- তৈলচার্জকরণের সময় গায়ে এপ্রোন দিতে হবে যাতে তেল ছিটে গায়ে না লাগে।
- े एकाहार्क्कवन काळ स्थर जामजाद भावान मित्र हाछ धूट इदन।

পলিটেকনিকের সকল বই ডাওনলোড করতে

ভিজিটঃ

সুপার সাজেশনস্

> শ্রতি সম্কন্ত প্রদ্রাবলি :

· > t	P-H চার্ট কাকে বলে?	[বাকাশিবো-২০১০ (পরি)]
	ইমর সম্প্রকৃত 🔊 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দুষ্টব্য ।	(my)
૨ i	p-h ভায়ামান কাকে বলে?	
	উচ্চর সংক্রেড 📳 অনুশীদনী ১ এর অতি সংক্ষিপ্ত প্রস্লোন্তর ২ নং দ্রষ্টব্য ।	
ত।	COP বলতে কী বুঝ?	[বাকাশিবো-২০১০ (পরি)]
	ত্তির সম্প্রত 🖥 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দুইব্য ।	[4]411 [64]-4030 (4](4))]
8 I	COP নির্পয়ের সূত্রটি নিখ।	[বাকাশিবো-২০১১ (পরি)]
	ত্রিরর সম্প্রেক্ত 🖥 অনুশীলনী ১ এর অতি সংক্ষিত্ত প্রস্লোভর ৪ নং দ্রাইব্য ।	[4 4 [41-4025 (4 8)]
¢ι	রেফ্রিজারেটিং ইফেস্ট কী?	[বাকাশিবো-২০০৪]
	ত্তিরর সমক্তেত 🖥 অনুশীলনী ১ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ৫ নং দ্রাইব্য ।	[4 4 - 4 -4008]
ঙ।	क्रिंगिकान भरान्ये कारक वरन?	•
	্তিভর সমক্তেত 🚭 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রদ্রোন্তর ৬ নং দুইব্য।	
91	P-H চার্টের তিনটি অঞ্চলের নাম দিব।	जिल्ला ५०४० । ।
	অথবা, P-H চার্টের প্রধান অক্তলগুলোর নাম লেখ।	[বাকাশিবো-২০০৭, ১২] [বাকাশিবো-২০১২(পরি), ২০১৪]
	অধবা, P-H চার্টের অঞ্চল কয়টি ও কী কী?	[বাকাশিবো-২০১১(পরি), ২০১৪]
	উছর সম্প্রেক্ত 🖁 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রাইব্য।	
b 1	RE নির্ণয় করার সূত্রটি দিখ।	
	্ট্রার সম্ফেত ব্র অনুশীলনী ১ এর অতি সংক্ষিত প্রশ্নোন্তর ৮ নং দ্রাইব্য ।	•
3 1	কম্প্রেসর কর্তৃক কাজ নির্ণয়ের সূত্রটি পিখ।	
	ইচর সম্প্রেক্ত 🗗 অনুশীলনী ১ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ৯ নং প্রষ্টব্য ।	ı
3 01	এনধালপি কী?	[বাকাশিবো-২০১১, ২০১৪]
	অখবা, এনথাদপি বদতে কী বোঝায়?	[বাকাশিবো-২০১৫(পরি)]
	উচর সম্ফ্রেন্স অনুশীলনী ১ এর অতি সংক্রিন্ত প্রশ্লোন্তর ১০ নং দ্রাইব্য।	, with the conditional
22 I	১ টন অব রেক্রিজারেশন সমান কত kw?	[বাৰুশিবো-২০০৯]
	উচর সংক্রেড এ অনুশীলনী ১ এর অতি সংক্রি ও প্রশ্নো ত্তর ১১ নং দ্রাষ্টব্য ।	turn ieu-Zoom
5 & (হিট অব কনডেলেশন বলতে কী বুঝায়?	[বাকাশিবো-২০০৪, ০৭]
	্রভার সম্প্রকাস অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ১২ নং দ্রাইব্য।	(11111111111111111111111111111111111111
१७।	হিমায়ন চক্রেন্র উপর হিমায়কের ইভাপোরেটিং ও কভেশিং প্রেসারের প্রভাব কী?	[বাকাশিবো-২০০৩, ০৫, ০৬]
	উচর সংক্রেত 🛭 অনুশীলনী ১ এর অতি সংক্রিঙ প্রশ্লোতর ১৩ নং দ্রষ্টব্য ।	(11 11 14 11 14 14 14 14 14 14 14 14 14
184	একটি যান্ত্রিক হিমায়ন চক্রে যে থার্মোডিনামিক প্রক্রিয়া বিদ্যমান, তা লিখ।	[বাকাশিবো-২০০৪]
	উছর সহতেত ব্ল অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ১৪ নং দ্রষ্টব্য।	[41411.1641-4009]
	- 14 A 14 MAN 14	

অ্যাডভাদড রেফ্রিজারেশন অ্যান্ড এয়ারকণ্ডিশনিং-২৭

\$ @ .I	কম্পাউভ কম্প্রেশন পদ্ধতি বলতে কী বুঝ?	[বাকশিবো-২০০৯]
	অথবা, কম্পাউভ কম্প্রেসন বলতে কী বুঝায়?	[বাকশিবো-২০০৭,২০০৮]
	অথবা, মান্টিস্টেজ কমপ্রেশন বলতে কী বুঝায়?	►[বাকাশিবো-২০০৯]
	উচন্ন সংক্রেন্ড ব্রু অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য :	
ا فاذ	ইন্টারকুলার কেন ব্যবহৃত হয়?	[বাকাশিবো-২০১০ (পরি)]
	অথবা, হিমায়ন চক্রে ইন্টারকুলারের কাজ কী?	[বাকাশিবো-২০০৪, ২০১২]
	অথবা, ইন্টারকুলার কী কাজ করে দেখ	[বাকাশিবো-২০১১]
	অথবা, ইন্টারকুলারের কাজ কী?	[বাকাশিবো-২০১১(পরি), ২০১২(পরি)]
	ঠিচর সংক্রেন্ড ছ) অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য ।	•
194	ফ্লাশ চেম্বারের কাজ কী? বাকাশিবো-২০০৪, ২০০৭, ২০০৮,	, ২০০৯, ২০১০, ২০১০ (পরি), ২০১৪]
	অথবা, ফ্লাশ চেদার ব্যবহার করা হয় কেন?	[বাকাশিবো-২০০৭,২০১২]
	অথবা, ফ্লাশ চেমার কী?	[বাকাশিবো-২০১১ (পরি)]
	অথবা, ফ্লাশ চেম্বারের কাজ উল্লেখ কর।	[বাকাশিবো–২০০৯]
	অখবা, ফ্লাশ ট্যাংকের কাজ কী?	[বাকাশিবো-২০০৯]
	অথবা, হিমায়ন চক্রে ফ্লাশ চেম্বার ব্যবহারের কারণ কী?	[বাকাশিবো-২০০৪]
	অথবা, ফ্রোট চেম্বার ব্যবহার এর কারণ কী?	[বাকাশিবো–২০০৪]
	ঠিচর সহকেত 🗗 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য	•
2p.(কম্পাউন্ড ভ্যাপার কম্প্রেশন পদ্ধতির বাংলা অর্থ কী?	
	ঠিচর সংক্রেন্স 🖟 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য :	
1 64	কম্পাউন্ড ভ্যাপার কম্প্রেশন অপর নাম কী?	
	তিহন সংক্রেন্ড জ্ব অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।	
२० ।	সিক্ষেন স্টেঞ্জ কম্প্রেশনের তুলনায় ইন্টারকুলার ব্যবহার করে মান্টিস্টেজ কম্প্রেশনে	নর সুবিধা উল্লেখ কর?
	ঠিচর সংক্রেন্ত অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রস্লোন্তর ৬ নং দ্রষ্টব্য ।	
२ ५ ।	ইন্টারকুলার ব্যবহৃত হয় এমন ২টি মান্টিস্টেজ ভ্যাপার কম্প্রেশন পদ্ধতির নাম লিখ	?
	ঠিচর সংক্রেন্ত 🖁 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।	
२२ ।	মান্টিস্টে জ টু-স্টেজ কম্প্রেশন পদ্ধ তিতে ওয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলার ব্য	वशस्त्रद्भ ফলে সিস্টেমে की घटिः?
	অধবা, মান্টিস্টেজ কম্প্রেশনে ওয়াটার ইন্টারকুলার কেন ব্যবহার করা হয়?	[বাকাশিবো-২০০৮]
	্ঠিচর সংক্রেত 🚱 অনুশীলনী ২ এর অতি স্থক্ষিপ্ত প্রশ্লোন্তর ৯ নং দ্রষ্টব্য ।	
২৩।	সাব-কুলড লিকুইড বলতে কী ঝুঝায়?	[বাকাশিবো-২০০৯, ২০১৫(পরি)]
	্ঠিত্তর সম্প্রকত 🚱 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ১০ নং দ্রষ্টব্য ।	
ર8 ા	ইউটেকটিক ফুইডের ব্যবহার শিখ।	[বাকাশিবো-২০০৯]
	্ঠিতর সংক্রেত ত অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য ।	,
२৫।	ফ্লাশ গ্যাস বলতে কী বুঝায়?	[বাকাশিবো-২০০৪, ২০০৭]
	ঠিচর সহকেত 🖁 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য ।	
, ২৬ ৷	ক্যাসকেড সিস্টেম বলতে কী বুঝায়?	[বাকাশিবো-২০১১, ২০১৫(পরি)]
	অথবা, ক্যাসকেড সিস্টেমের সংজ্ঞা দাও।	[বাকাশিবো-২০০৪, ২০১১ (পরি)]
	অথবা, ক্যাসকেড রিফ্রিজারেশন কাকে বলে?	[বাকাশিবো-২০১৪]
	অথবা, কেসকেট রেফ্রিজারেশন সিস্টেম বলতে কী বোঝায়?	[বাকাশিবো-২০১১]
	' ঠিচর সমকেত ট্র অনুশীলনী ও এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।	

₩,	সুপার সা জেশন স্	২১১,
২৭	अर्थन प्रशासीय जनन पूर्ण विश्वास्था स्थाप । स्थाप विश्वास्था स्थाप । स्	
	তিষয় সংক্রেত ত্ত অনুশীলনী ৩ এর অতি সংক্রিও প্রশ্নোন্তর ২ নং দুইবা।	
২৮	। মান্টি ইভাপোরেটর ব্যবহারে কী কী সুবিধা পাওয়া যায়?	
	্রিছর সংক্রেত 🚱 অনুশীলনী ৩ এর অতি সংক্রিও প্রশ্নোন্তর ৩ নং প্রটব্য ।	
২৯		[বাঞ্চাশিবো-২০০৮,২০০৯]
	্ঠিছর সমকেন্ত 🗷 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুইব্য ।	(41411 1641-4008,4008)
৩০		
	অপবা, ব্যাক প্রেসার ভালভ কী কাজ করে লেখ?	[वाकानिरवा-२०১১]
	্রিছর সংক্রেত তা অনুশীঙ্গনী ও এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং প্রষ্টব্য ।	[4]4[1-[64]-4022]
9 2		
	অধবা, ক্যাসকেড কভেলার এর কাঞ্চ কী?	[বাকাশিবো-২০১৪]
	অধবা, ক্যাসকেড কন্ডেন্সার কাকে বলে।	[वाकानिद्या-२०३३]
	অথবা, ক্যাসকেড কভেদার কেন ব্যবহার করা হয়।	. स्थाना स्थानस्थ्यस्
	্র্রার সমকেত । অনুশীলনী ও এর অতি সংক্ষি ন্ত প্রশো ন্তর ৬ নং দ্রাইব্য ।	
৩২।	ইলেকট্রোপ্রেটিং কীসের ভৈরি।	[বাকাশিবো-২০০৯]
	্ত্রির সমকেত 🕏 অনুশীলনী ৩ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ৭ নং দুষ্টব্য :	
৩৩।	সোলার হিটিং কী?	[ব্যকাশিবো-২০১৪]
	অধবা, সোলার হিটিং বলতে কী বুঝায়?	[वाकानिरवा-२० ১১ , २०১৪]
	তিষ্কর সক্ষেত্র 🔊 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।	(11 11 14 1- 2022, 2028)
98	সোলার হিট অপারেটেড এয়ারকন্ডিশনিং-এর সংজ্ঞা দাও।	•
	উছর সমকেত জ অনুশীলনী ৪ এর অতি সংক্রিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য ।	
७० ।	সোলার কালেষ্টর কী?	[বাকাশিবো-২০০৯]
	অধবা, সোলার কালেক্টর এর কাজ কী?	[याकानिता-२००८]
	অধবা, সোলার হিট কালেট্র এর কাঞ্চ কী?	[4(4) -104 -4008]
	অধবা, সোলার হীট কালেষ্টরের কাজ উল্লেখ কর।	[বাকালিবো-২০০৯]
	তিহর সংক্রেত । অনুশীলনী ৪ এর অতি সংক্রিও প্রশ্নোন্তর ৩ নং দ্রইব্য।	
৩৬।	ফ্ল্যাট প্লেট কালেষ্ট্রর কী কী উপাদান নিয়ে গঠিত?	[বাকাশিবো-২০১২(পরি), ০৭, ১০, ১৫(পরি)]
	🗦 ভর সমকেত 🔊 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রল্লোন্ডর ৪ নং দুইব্য ।	(11)
99 1	পরিব্যপ্ত সৌরতাপ বিকিরণের সংজ্ঞা দাও।	[বাকশিবো-২০০৮]
	😎র সমকেত 😅 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দুষ্টব্য।	[1141 1441-2000]
७४ ।	এয়ার সোলার কালেন্টর কী?	[বাকাশিবো-২০০৪]
	অপবা, এয়ার সোলার কালেষ্টর বলতে কী বোঝায়?	[বাকালিবো-২০১৫(পরি)]
	🗷 उडर नच्दर छ 🕏 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দুটব্য।	the second second second
। ४०	विभाग्नक की?	
	ত্রিরর সমকেত 🗿 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দুটব্য।	
801	বচ্স ব্যবহৃত কয়েকটি হিমায়কের নাম ও রাসায়নিক সংকেত লিখ।	
	🗦 इत সংক্রেত 🖁 অনুশীলনী ৬ এর অভি সংক্রিও প্রশ্লোতর ২ নং দুষ্টব্য ।	
82 t	হিমায়কের প্রয়োজনীয়তা দিখ।	
	ঠিতর সম্মেক্ত 🔊 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দুটব্য ।	
		•

```
२ऽ२
                                      আডভালড রেফ্রক্সারেশন আভ এং ্কভিশনিং
৪২ : হিমায়কের প্রধান দুটি শ্রেণিবিভাগ লি<del>খ</del> :
        (উচর সংক্রেড 🗗 অনুশীলনী ৬ এর অতি সংক্রিও প্রশ্নোত্তর ৪ নং দুষ্টব্য ।
        পৃথিবীর প্রথম হিমায়কের নাম কী এবং কোখায় ব্যবহৃত হয়?
8७।
                                                                                                     [বাকাশিবো-২০০৯]
        ঠিতর সংক্রেত 🚱 অনুশীলনী ৬ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ৫ নং দুষ্টব্য ।
88। শিল্প ও বাণিজ্যিক হিমায়নে কী কী হিমায়ক ব্যবহৃত হতে পারে?
        ঠিতর সম্প্রেক 🛃 অনুশীলনী ৬ এর অতি সংক্ষিও প্রশ্লোন্তর ৬ নং দুষ্টব্য।
       রেসিপ্রোকেটিং কম্প্রেসরের সাথে ব্যবহৃত হতে পারে এমন পাঁচটি হিমায়কের নাম লিখ।
        (ইষ্ট্রন সম্প্রেক্ত 🚱 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।
৪৬। প্রাইমারি হিমায়ক কী?
        ঠিচর সম্প্রকৃত 🛃 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।
৪৭। হিমায়নের কুটনাঙ্ক ও সুপ্ততাপ কিরূপ হওয়া উচিত?
       অথবা, হিমায়কের সুপ্ততাপ কীরূপ হওয়া উচিত?
                                                                                               [বাকাশিবো-২০১৫(পরি)]
        (ঠঁহর সংক্রেড 📕) অনুশীলনী ৬ এর অতি সংক্রিও প্রশ্নোন্তর ১০ নং দ্রষ্টব্য ।
৪৮। নতুন উদ্বাবিত তিনটি হিমায়কের নাম লিখ।
       (ঠচর সংক্রেড 🗗 অনুশীলনী ৬ এর অতি সংক্রিপ্ত প্রশ্লোন্তর ১১ নং দ্রষ্টব্য।
       ২টি পুরাতন হিমায়ক এবং এদের স্থলাভিষিক্ত হিমায়কের নাম দিখ।
                                                                                              [বাকাশিবো-২০১০ (পরি)]
       ঠিতর সংক্রেড 🚰 অনুশীলনী ৬ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ১২ নং দুষ্টব্য।
৫০। চারটি তেলের নাম লিখ।
       ঠিচর সমকেত 🛐 অনুশীলনী ৬ এর অতি সংক্ষিন্ত প্রশ্নোত্তর ১৩ নং দুটব্য ।
       ২টি হিমায়কের নাম এবং তেলের নাম দিখ। নতুন উদ্ভাবিত ২টি হিমায়কের নাম ও রাসায়নিক সংকেত দিখ।
        [ঠঁচর সংক্রেত 🛐 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৪ নং দুষ্টব্য।
৫२। R-11 ও R-12-এর রাসায়নিক নাম লেখ।
                                                                                                    [বাকাশিবো-২০০৯]
       (ইছর সহকেত 🗗 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৫ নং দুষ্টব্য ।
কে। হিমায়ক—134a এর সঙ্গে ব্যবহৃত তৈলের নাম লিখ।
                                                                                                [বাকাশিবো-০৩,০৫,০৬]
       অথবা, আধুনিক হিমায়কের সঙ্গে ব্যবহৃত তৈগের নাম লিখ :
                                                                                                    [বাকাশিবো-২০০৪]
       ঠিচর সংক্রেত 🛃) অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্লোতর ১৬ নং দ্রষ্টব্য।
৫৪: পৃথিবীর প্রথম হিমায়ন যদ্মের নাম কী?
                                                                                                    বিকাশিবো-২০০৯
        ইত্তর সংক্রেড 💇 অনুশীলনী ৬ এর অতি সং<del>ক্রিও</del> প্রশ্নোত্তর ১৭ নং দ্রষ্টব্য।
৫৫। R-22 হিমায়কের সুগুতাপ বেশি হওয়া সত্ত্বেও আবাসিক রেফ্রিজারেটর ব্যবহৃত হয় না কেন?
                                                                                                    [বাকাশিবো-২০০৪]
       [ঠঁহর স্থ্রেক্ত 🖁] অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্লোত্তর ১৮ নং দুষ্টব্য।
৫৬। CFC কী?
                                                                                                [বাকাশিবো-০৪,০৭,১২]
       অথবা, CFC বলতে কী ধরনের হিমায়ককে বোঝায় লেখ।
                                                                                             [বাকাশিবো-২০১১, ২০১৪]
       অথবা, CFC বলতে কী বুঝায় লিখ।
                                                                                         [বাকাশিবো-২০০৯, ১০ (পরি)]
       অধবা, সিএফসি ফ্রি হিমায়ক কী?
                                                                                                [বাকাশিবো-২০০৮, ১০]
       (ঠিচর সমক্রেত 🛐 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর 🕽 নং দ্রষ্টব্য।
৫৭ । R-134 এর রাসায়নিক সংকেত লিখ।
       অথবা, হিমায়ক R-134a-এর রাসায়নিক সংক্তেত লেখ ৷
                                                                                               [বাকাশিবো-২০১৫(পরি)]
       ঠিতর সম্ফেত 🚱 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রুষ্টব্য।
```

সুপার সাজেশনস্

৫৮ : গ্লোবাল ওয়ার্মিং পটেনশিয়াল বলতে কী বোঝায়? [বাকাশিবো-২০০৭, ২০১২] অথবা, ম্মোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বুঝায়? [বাঞ্চাশিবো-২০০৩, ০৫, ০৬, ১০, ২০১২(পরি)] অথবা, গ্লোবাল ওয়ামিং পটেনশিয়াল কী? [বাকাশিবো-২০১১(পরি), ২০১৪] অথবা, GWP বলতে কী বোঝায়? [বাকাশিবো-২০১৫(পরি)] (ঠভর সমক্রেড 🗗 অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৩ নং দুষ্টব্য। ৫৯। হিমায়ক 134a এর রাসায়নিক সংক্তেও ও কুটনাংক লেখ। [वाकनिरवा-२००७, २००৫, २००५, २००१, २०১२] অথবা, হিমায়ক 134a এর রাসায়নিক সংকেত লেখ : [বাকাশিবো-২০১১,২০১০] অথবা, হিমায়ক 134a এর রাসয়ানিক নাম ও সংকেত লেখ। [বাকাশিবো-২০০৯] (উচর সমকেত 🗗 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুষ্টব্য। ৬০। গ্রিনহাউজ ইফেকট কী? [বাকাশিবো-২০১১] (ঠভর সম্প্রকৃত 🗗 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দুটব্য। পরিবেশ বান্ধৰ রেফ্রিজারেন্ট বলতে কী বুঝায়? [বাকাশিবো-২০০৪, ২০০৯] [ঠছর সম্প্রেক্ত 🖁] অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য : ৬২। CO2 এবং O2 এর ভারদাম্যতা বলতে কী বুঝায়? [বাঞ্চাশিবো-২০০৭] (ঠছর সম্প্রেক্ত 🛭 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দুষ্টব্য । ৬৩ ৷ থ্রীনহাউস প্রতিক্রিয়ার ফলে পরিবেশের কী পরিবর্তন হচেছ? [বাকাশিবো-২০০৪] (ঠছর সক্তকত 🗗 অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৮ নং দুষ্টব্য । QDS-की? **∖8** I [বাকাশিবো-২০০৪] (ঠছর সম্প্রকৃত 🗗 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রুষ্টব্য। ৬৫। প্রজ্ঞান (O₃) ডিপ্লেশন বলতে কী বোঝায়? [বাকাশিবো-২০১২ (পরি), ২০১৫(পরি)] (উচর সম্প্রেড 🛭 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দুষ্টব্য। اوي সান্ত্ৰতা কী? (ठेडत সম্ফেক 📴) অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দুষ্টব্য : ৬৭। দুটি কম্প্রেসার অয়েলের নাম লিখ। (ঠভর সম্প্রেক্ত 🚱 অনুশীলনী ৮ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ৩ নং দুষ্টব্য । ৬৮। ফ্রক পয়েন্ট কী? [বাকাশিবো-২০০৪, ২০০৮, ২০০৯] (ठेडत সম্প্রকৃত 🗗 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দুষ্টব্য । ৬৯। তেল নির্বাচনে প্রবহমানতার গুরুত্ব দিখ। [বাকাশিবো-২০১০ (পরি)] (ঠারর সক্ষকত 🖪) অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং প্রষ্টব্য। ৭০। ক্লাউড পয়েন্ট বলতে কী বুঝায়? [बाकानिरवा-२००९, २००৯, २०১०,२०১২ (পরি), २०১২, २०১৪] জ্ববা, ক্লাউড পয়েন্ট কী? [বাকাশিবো-২০১২(পরি)] (বিষয় সম্ফেত 📳 অনুশীলনী ৮ এর অতি সংক্রিও প্রশ্নোত্তর ৭ নং দ্রষ্টব্য : ৭১। HFC রেফ্রিজারেন্টে কী তেল ব্যবহৃত হয় তার নাম দিখ। অথবা, HFC হিমায়কে যে তেল ব্যবহৃত হয় এটির নাম লেখ। বাকাশিবো-২০১৫(পরি)] (ঠভর সক্ষকত 📓 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্লোত্তর ৮ নং দুষ্টব্য । ৭২। কম্প্রেসর ওয়েল কী কাজ করে লেখ। [বাকাশিবো-২০১১] অথবা, কম্প্রেসর অয়েল কেন ব্যবহৃত হয়? [বাকাশিবো-২০০৯, ২০১৫(পরি)]

🖥 🗗 সম্মেক্ত 📳 অনুশীলনী ৮ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।

```
৭৩। সান্দ্রতার উপর তাপের প্রভাব দিখ।
         অথবা, সান্দ্রতা (Viscosity) এর উপর তাপমাত্রার প্রভাব শিখ।
                                                                                                     [বাকাশিবো-২০০৯]
         ঠিত্তর সম্প্রকত 🚱 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য।
        ইউটেকটিক ফুইডের ব্যবহার লিখ।
                                                                                        [বাকাশিবো-২০০৭, ০৯, ১২, ১৪]
  981
         ্রিষ্টর সম্ফেক্ত 🛭 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য।
        রেফ্রিজারেন্ট রিকোভারী বলতে কী বুঝ?
  ବଝ ।
                                                                                                     [বাকাশিবো-২০১৪]
         অথবা, হিমায়ক রিকোভারী বলতে কী বোঝায়?
                                                                                               [বাকাশিবো-২০১৫(পরি)]
         ঠিছর সম্ক্রেত 🚱 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য।
        রেফ্রিজারেন্ট রিসাইকেলিং বলতে কী বুঝ?
                                                                                              [বাকাশিবো-২০১১, ২০১৪]
         অথবা, রিসাইক্লিং বলতে কী বুঝায়?
                                                                                                 [বাকাশিবো-২০১১, ১৪]
         অথবা, হিমায়কপূর্ণ চক্রায়ন বলতে কী বোঝায়?
                                                                                                     [বাকাশিবো-২০০৯]
         🕏 ত্তর সম্ফ্রেক্ত 📴 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য ।

    ৭৭। রেফ্রিজারেন্ট রিক্রেইম বলতে কী বুঝ?

                                                                                       [বাকাশিবো-২০০৭, ২০১০(পরি)]]
         অথবা, হিমায়ক রিক্লেইম বলতে কী বুঝায়?
                                                                         [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১৫(পরি)]
         অথবা, রিক্রেইম বলতে কী বুঝায়?
                                                                                                     [বাকাশিবো-২০১৪]
         অথবা, রিক্রেইম কী?
                                                                                    [বাকাশিবো-২০০৭, ১০, ২০১১(পরি)]
         (উষ্টর সম্ফেক্ত 🗗 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।
  ৭৮। হিমায়ক পুনঃলাডের দৃটি পদ্ধতির নাম দিখ।
                                                                [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৮, ২০১১ (পরি)]
         উচর সম্ফেন্ড 🛭 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।
        রেট্রোফিটিং বলতে কী বুঝ?
                                                                 [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৮, ২০১১ (পরি)]
         (উচর সম্ফেক্ত 🛭) অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোস্তর ৫ নং দুষ্টব্য ।
 ৮০। ড্রপ ইন রেফ্রিজারেন্ট বলতে কী বুঝ?
                                                                                       [বাকাশিবো-২০০৯, ২০১২ (পরি)]
         (উষ্কর সম্প্রকৃত 🛭 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য ।
 ৮১। দ্রাই আইসের সংজ্ঞা দাও।
                                                                                               [বাকাশিবো-২০১২ (পরি)]
         অথবা, ড্ৰাই আইস কাকে বলে?
                                                                                              [বাকাশিবো-২০০৪,২০১০]
         অথবা, ড্ৰাই আইস বলতে কী বোঝায়?
                                                                                               [বাকাশিবো-২০১৫(পরি)]
         উচর সম্ফেত 🗿 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।
 ৮২। এয়ার সাইকেল হিট পাম্পের সংজ্ঞা দাও।
         [উষ্টর সম্মকত 📳 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ১ নং দ্রষ্টব্য।
 ৮৩। হিট পাম্প বলতে কী বুঝ?
                                                                                                     [বাকাশিবো-২০১১]
         অথবা, হিট পাম্প কী?
                                                                                                     [বাকাশিবো-২০১১]
         ভিষয় সম্ফেত 🚱 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ২ নং দ্রষ্টব্য ।
 ৮৪। বর্তমানে ব্যবহৃত হচ্ছে এমন কয়েকটি হিট পাম্পের নাম লিখ।
         অথবা, হিট পাস্পের তালিকা দাও।
                                                                                                     [বাকাশিবো-২০১১]
         (উষ্কর সম্প্রক্রেন্ড 💅 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রষ্টব্য।
        হিট পাম্প ব্যবহারের উদ্দেশ্যগুলো লিখ।
                                                                   [বাকাশিবো-২০০৫, ২০০৬, ২০১২ (পরি), ২০১৫(পরি)]
         অথবা, হিট পাস্পের প্রয়োগক্ষেত্রগুলো শেখ।
                                                                              [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৯]
         অথবা, শিল্পক্ষেত্রে হিট পাম্পের ব্যবহার লিখ।
                                                                                                     [বাকাশিবো-২০০৮]
         অথবা, হিট পাম্পে ৪টি ব্যবহার ক্ষেত্রের নাম দিখ।
                                                                                               [বাকাশিবো-২০১২(পরি)]
```

উন্তর সক্ষকত 🛐 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুষ্টব্য। .

🚅৮৬। হিট পাম্পের COP নির্ণয়ের সূত্রটি লেখ। [বাকাশিবো-২০০৭, ২০০৮, ২০১০, ২০১২, ২০১০ (পরি), ২০১৫(পরি)] অথবা, COP নির্ণয়ের সূত্রটি লেখ 🗆 [বাকাশিবো-২০১১(পরি)] **টিডর সম্প্রেক্ত 🚱** অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য । ৮৭। হিট এক্সচেঞ্জার কাকে বলে? অথবা, উদাহরণসহ হিট এক্সচেঞ্জার এর সংজ্ঞা দাও। [বাকাশিবো-২০০৮, ২০১০ (পরি)] অথবা, হিট এক্সচেঞ্জার কী কাজ করে? [বাকাশিবো–২০০৯, ২০১১] 🕏 🗷 সমকেত 🖪 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য। উদাহরণসহ ডাইরেষ্ট কন্টাষ্ট হিট এক্সচেঞ্জার এর সংজ্ঞা দাও। (**উষ্কর সম্ক্রেন্ড 🛐**) অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নো**ন্ত**র ২ নং দ্রষ্টব্য। প্যারালাল ফ্রো হিট এক্সচেঞ্জার কাকে বলে? (ঠছর সংক্রেস্ত 🛭 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোম্ভর ৫ নং দ্রষ্টব্য 🗵 কাউন্টার ফ্রো হিট এক্সচেঞ্জার কাকে বলে? (**ইডর সংক্রেন্***ত ব্রি***) অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নো**ন্তর ৬ নং দ্রষ্টব্য । ক্রস ফ্রো হিট এক্সচেঞ্জার কাকে বলে? (ইষ্টর সংক্রেন্ড 🗗 অনুশীলনী ১১ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য। শেল অ্যান্ড টিউব টাইপ হিট এক্সচেঞ্জার বলতে কী বুঝায়? **ঠিষর সংক্রেন্ড 🛭** অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য । হিট এক্সচেঞ্চারে তাপ স্থানান্তরের হার নির্ণয়ের সূত্রটি লিখ। [**ইষর সম্প্রকত 💅**) অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রস্টব্য : ৯৪। লগ মিন বা লগারিদমিক মিন টেম্পারেচার ডিফারেন্স নির্ণয়ের সূত্রটি লিখ। অথবা, LMTD-বলতে কী বুঝায়? [বাকাশিবো-২০১০] অথবা, লগ মিন টেম্পারেচার ডিফারেঙ্গ (LMTD) কাকে বলে? [বাকাশিবো-২০০৩, ২০০৫, ২০০৬] ঠিছর সম্প্রেক্ত 🚱 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য । ৯৫। ইভাপোরেটিভ এসির মূলতত্ত্বটি লিখ। [বাকাশিবো-২০০৪, ২০০৮, ২০১০] অথবা, ইভাপোরেটিভ কুলিং সিস্টেম এর সংজ্ঞা দাও। [বাকাশিবো-২০১১] অথবা, ইডাপোরিটিভ কুলির সিস্টেম বলতে কী বুঝায়? বাকাশিবো-২০০৯, ২০১৪, ২০১৫(পরি)] (ঠছর সম্প্রেক্ত 🛭 অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রন্মোন্তর ১ নং দ্রষ্টব্য। ইভাপোরেটিভ এসির বিভিন্ন অংশের নাম লিখ ৷ **ঠিষর সম্প্রকাস 🛃** অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য i ইভাপোরেটিভ রেফ্রিজারেশন সিস্টেম বলতে কী বুঝায়? ঠিছর সংক্রেন্ড 🚱 অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দুষ্টব্য ।

ইভাপোরেটিভ কুলিং বলতে কী বুঝায়?

অথবা, ইতাপোরেটিভ কুলিং এর সংজ্ঞা লিখ :

ইটর সংক্রেন্ত 🚱 অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৪ নং দুষ্টব্য ।

[বাকাশিবো-২০০৮, ১০] [বাকাশিবো-২০০৪]

🕽 मधीकल श्रद्वावित :

21 একই আদর্শ প্রেসার এনধাঙ্গপি ডায়াগ্রাম অঙ্কন কর। 🖥 উচ্চ সংক্রেড 🚱 অনুশীদনী ১ এর সংক্রিপ্ত প্রশ্নোন্তর ১ নং দ্রুষ্টব্য । COP এর মান কীডাবে বাড়ানো যায়? [বাকাশিবো-২০১০] २ । অথবা, COP-এর গুরুত্ব বর্ণনা কর। [বাকাশিবো-২০০৯] [উচর সম্ফেত 🖥] অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্লোম্বর ৩ নং দ্রষ্টব্য । RE, WD এবং COP নির্ণয়ের সূত্রগুলো লিখ। 91 🗦 ভরা সংক্রেত 🛐 অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দুটব্য । একটি সম্পুক্ত সরল হিমায়ন চক্রের P-H ডায়াগ্রাম অন্ধন করু। [বাকাশিবো-২০১৫(পরি)] 8 + 🗦 ভর্ম সংক্রেত 🚱 অনুশীদনী ১ এর সংক্ষিপ্ত প্রস্লোম্ভর ৫ নং সুষ্টব্য : [বাকাশিবো-২০১১ (পরি), ২০০৭, ২০১০] **(* 1** RE = 90 kJ/kg একং WD = 30 kJ/kg হলে Heat of condensation কত? (উভন্ন সম্প্রকৃত 🖥) অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং প্রউব্য । পি.এইচ চার্ট অন্তনপূর্বক বিভিন্ন Zone-এর বর্ণনা দাও ৷ [বাকাশিবো-২০০৯] ঙা ঠিতর সম্ফেত 🗗 অনুশীলনী 🕽 এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য । DBT এবং WBT এর সংজ্ঞা দাও। [বাকাশিবো-২০০৯] 91 ঠিতর সংক্রেত 🚱 অনুশীলনী ১ এর সংক্রিপ্ত প্রশ্লোন্তর ৮ নং দুইব্য । Critical temparatur, Critical pressure Ges Critical point এর সংজ্ঞা দাও। bІ অথবা, ক্রিটিক্যাঅল প্রেসার কাকে বলে? [বাকাশিবো-২০১১(পরি)] (উচর সদক্রেত 🗗) অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দুষ্টব্য। ইন্টারকুলার ব্যবহৃত কম্পাউন্ড ভেপার কম্প্রেসর পদ্ধতির সুবিধাসমূহ লিখ। **39** Ⅰ অথবা, সিঙ্গেল স্টেজ অপেক্ষা মান্টিস্টেজ কম্প্রেশন পদ্ধতির সুবিধান্তনি লিখ : [বাকাশিবো-২০০৯] (উভর সম্প্রেক্স 🗗) অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রুষ্টব্য । ইন্টারকুলার ব্যবহৃত মান্টিস্টেজ বা কম্পাউন্ড কম্প্রেশন পদ্ধতিগুলো কী কী? 301 (উভন্ন সংক্রেড 🚱 অনুশীদনী ২ এর সংক্ষিত্ত প্রশ্নোন্তর ২ নং দ্রউব্য । একটি ফ্লাশ চেমারসহ ভেপার কম্প্রেশন রেফ্রিজারেশন পদ্ধতির প্রবাহচিত্র অন্ধন কর। অথবা, ফ্লোট চেম্বার ব্যবহার এর কারণ কী? [বাকাশিবো-২০০৪] 🕉 হর সম্প্রকৃত 🚱 অনুশীগনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রুষ্টব্য। ১২। লিকুইড ইন্টারকুলারসহ টু-স্টেজ কম্প্রেশন সিস্টেমের বর্ণনা দাও। [বাকাশিবো-২০০৩, ০৫, ০৬, ০৭, ১২, ২০১১(পরি), ১৪] অথবা, ওয়াটার ইন্টারকুলার ব্যবহৃত দুই ধাপের বাস্প সংকোচন পদ্ধতির প্রবাহ চিত্র অন্তন কর। বাকাশিবো-২০০৪, ১৪] ঠিতর সংক্রেড 🚱 অনুশীলনী ২ এর সংক্রিঙ প্রশ্রোত্তর ৪ নং দুষ্টব্য। ১৩। একটি মান্টিস্টেজ কম্প্রেশন হিমায়ন চক্র অন্ধন কর। [বাকাশিবো-২০০৭, ২০১২, ২০১১(পরি), ২০১৪] অধবা, ডেপার কম্প্রেশন সিস্টেমের ডায়াগ্রাম অঙ্কনপূর্বক বিভিন্ন অংশ চিহ্নিত কর। [বাকাশিবো-২০০৯] [বাকাশিবো-২০০৯] . অথবা, একটি মান্টিস্টেজ সিস্টেমের প্রবাহচিত্র অন্তন করে বিভিন্ন অংশ চিহ্নিত কর। ঠিচর সংক্রেত 🗗 অনুশীলনী ২ এর সংক্রিপ্ত প্রশ্লোম্ভর ৫ নং দুষ্টব্য। নিমু তাপমাত্রা উৎপাদনের ক্ষেত্রে ত্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের সীমাবদ্ধতান্তলো লেখ ৷ (বাকাশিবো-২০১২ (পরি)]

[উচর সংক্রেড 💆 অনুশীলনী ২ এর সংক্রিও প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

	সুপার সাজেশনস্	২১৭
३७ ।	ভেপার কম্পাউন্ড কম্প্রেশন রেফ্রিজারেশন পদ্ধতির সুবিধা গুলো দেব া	[বাকাশিবো-২০০৯, ২০১১]
	অধবা, মান্টি-ইভাপোরেটর সিস্টেমের অসুবিধাতলো লেখ	[বাৰুাশিবো-২০১৫(পব্নি)]
	অথবা, মান্টি-ইভাপোরেটর সিস্টেমের দুইটি সুবিধা ও অসুবিধা লেখ।	[বাকাশিবো–২০০৯, ২০১০(পরি)]
	অথবা, মান্টিস্টেজ কম্প্রেলনে ওয়াটার ইন্টারকুলার কেন ব্যবহার করা হয়?	[বাকাশিবো-২০০৮]
	অধবা, মান্টি স্টেজ কম্প্রেশন সিষ্টেমের সুবিধা ও অসুবিধাগুলো লিখ।	[বাকশিবো-২০০৩, ০৫, ০৬, ০৭]
	অধবা, ডেভার কম্প্রেশন সাইকেল সাব-কুন্ত ও সুপার হিটের সুবিধা অসুবিধাগুলো	निখ । [বাকালিবো-২০০৪]
	অধবা, কম্পাউড কম্প্রেলন সিস্টেমের সুবিধা ও অসুবিধান্তলো লেখ।	[বাকাশিবো-২০০৯]
	্ঠিতর সংক্রেত 🔐 অনুশীলনী ২ এর সংক্ষিপ্ত প্রস্নোত্তর ৭ নং দুষ্টব্য।	
१७५	নিমু তাপমাত্রার হিমায়নের ব্যবহার ক্ষেত্রগুলো উ রেখ কর।	[ব্যক্তাশিবো–২০০৯]
	ত্রীয়র সংক্রেত ব্র অনুশীলনী ২ এর সংক্রিও প্রশ্নোন্তর ৮ নং দুষ্টব্য।	
۱ ۹ د	ইভাপোরেটরের চাপ কমলে RE এবং WD এবং (COP এর উপর কী প্রভাব পড়ে	? [বাঞ্চাশিবো-২০০৭]
	ত্রিত্বর সম্প্রকৃত 😽 অনুশীলনী ও এর সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দুইব্য ।	
3 br (क्रांनरक्फ निरुप्रेयत्र श्रसांजनीय्रणे की?	
	্রিচর সংক্রেত 🔊 অনুশীলনী ও এর সংক্রিপ্ত প্রশ্নোত্তর ২ নং দুষ্টব্য ।	
۱ ور	মান্টি রেফ্রিজারেন্টের নাম নিখ i	
	ত্রীয়র সম্প্রেকত 😽 অনুশীলনী ৩ এর সংক্ষিব্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।	
२ ०।	·	৭, ২০১০, ২০১১ (পরি), ২০১২, ২০১৪]
	অধবা, মান্টিস্টেঞ্জ ও ক্যাসকেড সিস্টেমের মাঝে পার্থক্যগুলো লেখ।	[বাকালিবো-২০১৫(পরি)]
	তিহন্ত সম্প্রেকত 🔊 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।	
२১ ।		[বাকাশিবো-২০১২ (পব্নি)]
	অথবা, ক্যাসকেড সিস্টেমে ব্যবহারের সুবিধাগুলো লিখ	[वाकानिदवा-२००8]
	😎 সহকেত 🗸 অনুশীলনী ও এর সংক্ষিত্ত প্রশ্নোন্তর ৬ নং দ্রম্ভব্য ।	((coo)
२२ ।	ব্যাক প্রেসার ভালভ কী কাজ করে লেখ।	[বাকাশিবো-২০১১]
	উচন্ন সহকেত ট্র অনুশীলনী ৩ এর সং ক্ লিন্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।	[4441 (641-632)]
২৩।	দু-স্টেজ ক্যাসকেড সিস্টেম PH ভায়ামাম অন্ধন কর ৷	[বাৰুগশিবো-২০১১ (পরি)]
	্তিত্বর সম্ফেক্ত ব্লী অনুশীলনী ও এর সংক্ষিত্ত প্রশ্নোত্তর ৮ নং দ্রাষ্টব্য ।	[4]411-1641-5033 (4]3)]
२ 8 ।		বাঞ্চাশিবো-২০০৪,২০০৭, ২০১০ (পব্নি)]
	অথবা, ক্যাসকেড সিস্টেম এর সচিত্র বর্গনা কর ।	বাকাশিবো-২০০৮, ২০১০ [বাকাশিবো-২০০৮, ২০১০]
	ত্তির সংক্রেত 🕝 অনুশীলনী ৩ এর সংক্রিও প্রশ্নোন্তর ৯ নং দ্রাষ্টব্য ।	[41411-141-2008, 2030]
२৫।	সোলার হিট কোখায় কোখায় ব্যবহৃত হয়?	[starfing) by (off)]
	অথবা, বাংলাদেশে সোলার হিটের প্রয়োগক্ষেত্রসমূহ লিখ	[বাকাশিবো-২০১০ (পরি)]
	উত্তর সমকেত 🚱 অনুশীলনী ৪ এর সংক্ষিও প্রশ্নোত্তর 🕽 নং দ্রষ্টব্য ।	[বাকালিবো-২০০৪, ২০০৭]
২৬ ৷	এয়ার সোলার কালেক্টর চিত্রসহ निখ।	' '.
	উভর সহকেত 🖁 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্লোম্ভর ৫ নং দ্রাষ্টব্য ।	
২ ۹ ۱	সোলার কালেক্টর কড প্রকার ও কী কী?	•
	অথবা, দু'টি সোলার কালেট্ররের নাম লিখ।	[বাকাশিবো-২০০৯]
	ঠিছর সম্প্রেক্ত 🔊 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য ।	[ALAN-KANA)
	प्राप्त के अंतर गाँउ चन्न गाँउ मक सद्भावत के सद् चेंडस) ह	

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশনিং–২৮

২১৮	অ্যাডডাঙ্গড রেফ্রিজারেশন অ্যাভ এয়া	রকণ্ডিশনিং
২৮।	দিকুইড সোদার কাদেক্টর কীভাবে কাজ করে?	[বাকাশিবো-২০০৭, ২০১২, ২০১৪]
	(ইছর সংক্রেত ह) অনুশীলনী ৪ এর সংক্রিপ্ত প্রশ্লোত্তর ৭ নং দ্রাষ্টব্য ।	
₹81	সোলার হিট কালেক্টরগুলো নাম লেখ।	[বাকাশিবো-২০১২ (পরি)
•	অথবা, বিভিন্ন প্রকার সৌরতাপ সংগ্রাহকের নাম লেখ।	[বাকাশিবো-২০০৮, ২০১৫(পরি)]
	অথবা, দুটি সোলার কালেক্টর এর নাম লিখ।	্বাকাশিবো-২০০৯
	উচর সহকেত ৪) অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং প্রষ্টব্য ।	
90 !	ফ্র্যাট প্লেট কালেক্টরের কাজ লিখ :	্ [বাকাশিবো-২০০8]
	উচন্ন সংক্রেন্ত 🚱 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য ।	[444 164-200]
७)।	সোলার এনার্জির প্রয়োগ ক্ষেত্রগুলো লিখ।	
•••	তিরুর সম্প্রেক্ত 🔊 অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দুষ্টব্য ।	
७२ ।	সোলার এনার্জি ব্যবহারপূর্বক ভেপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের	क्रिक प्राप्ता करत विकास प्राप्त विकास कर ।
•	פיונווא מיוואי איזלוא לאה בסיווא הביהושו באומיסונאיוא ואוניסינאל	•
	অথবা, সোলার এনার্জি চালিত একটি রেফ্রিজারেশন পদ্ধতির প্রবাহচিত্র গ	[বাকশিবো-২০০৩, ২০০৫, ২০০৬] মন্ধন কর। বাকাশিবো-২০০১]
	(ইচচ সংক্রেড ঃ) অনুশীলনী ৫ এর সংক্রিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।	44-1 4-3 1 [414-11-4009]
991	প্রাইমারি ও সেকেন্ডারি হিমায়কের মধ্যে তিনটি পার্থক্য লিখ	[atathree and coff)
•••		[বাকাশিবো-২০১০ (পরি);
	ত্তিহল সংক্রেত প্র অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।	- .
981	পাঁচটি হিমায়কের নাম, রাসায়নিক সংকেত এবং প্রতিটির ব্যবহার ক্ষেত্র	विष ।
	ত্রির সম্প্রেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য।	·
৩৫।	অর্গানিক ও ইনঅর্গানিক হিমায়কের মধ্যে পার্থক্য দিখ।	
	ত্রিষয় সম্ফ্রেড ব্ল অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রাইব্য ।	
৩৬ :	হিমায়ক 502 এবং এর স্থলাভিষিক্ত হিমায়ক 69S এর মধ্যে চারটি পার্থব	मु निर्थ।
	তিষ্কর সংক্রেত 🕙 অনুশীদনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।	·
७९।	হিমায়ক 69S এর পাঁচটি ভাল বৈশিষ্ট্য আলোচনা কর।	[বাকাশিবো-২০০৭, ২০১০, ২০১২ (পরি), ২০১০]
	উচন্ন সমক্রেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।	
৩৮।	হিমায়কের ভৌত গুণাবলিসমূহ লিখ।	·
	অথবা, একটি আদর্শ হিমায়কের ভৌত গুণাবলি কী কী?	[বাকাশিবো-২০১৪]
	অথবা, আদর্শ রেফ্রিজারেন্টের ভৌত গুণাবলি কী?	[বাকাশিবো-২০০৪, ০৭, ১২]
	উচর সমকেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।	
্ রত	হিমায়কের রাসায়নিক গুণাবলিসমূহ লিখ।	[বাকাশিবো-২০০৬]
S.	অথবা, একটি আধুনিক হিমায়কের রাসয়নিক গুনাবলির বর্ণনা দাও।	[বাকাশিবো-২০০৩, ০৫, ০৬]
	উচন্ন সংক্রেন্ত ৪ অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রন্টব্য ।	
801	হিমায়কের ধার্মোডাইনামিক গুণাবলি কী কী লিখ।	
	ত্রিরর সমক্রেত 🕙 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দুষ্টব্য ।	
85+	কোন কোন গুণের অধিকারী হলে একটি হিমায়ককে আদর্শ হিমায়ক বলা	याग्न?
	অথবা, একটি আদর্শ হিমায়কের বৈশিষ্ট্যগুলো বর্ণনা কর ।	[বাকাশিবো-২০০৯]
	অথবা, একটি আদর্শ হিমায়কের বৈশিষ্ট্যগুলো লিখ।	
	অথবা, আদর্শ হিমায়কের কী কী গুণাবলি থাকার প্রয়োজন তা লেখ।	[বাকাশিবো-২০১১]
	ঠিচর সম্প্রেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রউব্য ।	

	♣''	4 114-4 1 1·1	430
8२ ।	আধুনিক হিমায়কের ৪টি বৈশিষ্ট্য লেখ ৷ বি	কশিবো-২০০৮,২০০৯,২০১০,	২০১১ (পরি), ২০১২ (পরি), ২০১৪]
	অথবা, আদর্শ হিমায়কের কী কী গুণাবলি ধাকার প্রয়ো	জান তা লেখা।	[বাকশিবো-২০১১]
	অথবা, আধুনিক রেফ্রিজারেন্টের চারটি সুবিধা লিখ।		[বাকাশিবো-২০০৪]
	অথবা, তিনটি আধুনিক হিমায়কের গুণাবলি লেখ		[বাকাশিবো-২০০৯]
	অথবা, আধুনিক হিমায়কের সুবিধাগুলো লেখ।	•	[বাকাশিবো-২০১৫(পরি)]
	উচর সহকেত 🕏 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর		*
8 9	হ্যালো কার্বন রেফ্রিজারেন্টের নম্বর প্রদানের নিয়ম লেখ		[বাকাশিবো-২০০৪,২০০৮]
	অথবা, হ্যালোকার্বন রেফ্রিজারেন্টের নাম্বারিং করার পদ্ধ		[বাকাশিবো-২০০৪]
	উভর সম্ফেত ভ অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্লোস্তর	১২ নং দ্রষ্টব্য।	·
88 (চিকিৎসা ক্ষেত্রে হিমায়কের চারটি ব্যবহার লিখ।		[বাকাশিবো-২০০৭]
	ইত্তর সংক্রেত ভা অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর	১৩ নং দ্রষ্টব্য ।	
80	হিমায়কের সুগুতাপ বেশি হওয়া সম্বেও আবাসিক রেফ্রি	জারেটর ব্যবহৃত হয় না কেনঃ	
	উচর সংকেত এ অনুশীলনী ৬ এর সংক্ষিত্ত প্রশ্নোত্তর	১৪ নং দ্রষ্টব্য।	
8৬ ৷	হিমায়ক-১১ এর ব্যবহার বন্ধ করার বৈজ্ঞানিক যুক্তি কী	?	[বাকাশিবো-২০০৪]
	ইছর সহকেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর	১৫ নং দ্ৰষ্টব্য।	
89	পরিবেশ বান্ধব হিমায়ক বলতে কী বুঝ?		
	ইছর সংক্রেত ব অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর	১ নং দ্রষ্টব্য।	
8b	আধুনিক হিমায়কের স্বিধাসমূহ লিখ।		[বাকাশিবো-২০০৪]
	তিহর সংক্রেত 🖁 অনুশীলনী ৭ এর সংক্রিপ্ত প্রশ্লোত্তর	২ নং দ্রষ্টব্য।	, (2.00)
8≽ ∤	চারটি পরিবেশ বান্ধব হিমায়কের রাসায়নিক সংকেতসহ		
	ত্তির সংক্রেত ব্লু অনুশীলনী ৭ এর সংক্রিপ্ত প্রশ্নোতর	•	
(to i	ODS ও ODP ও GWP বলতে কী বুঝ?		[বাকাশিবো-২০০৪, ২০১৪]
	তিরর সংক্রেত ৪ অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ।	৪ নং দুষ্টব্য ৷	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
١٤٥	CFC এর সাথে গুজোন এর বিক্রিয়াটি লিখ		
	ঠিতর সংক্রেত । অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোতর ।	১ নং দেষ্টবা ।	
৫২ ।	থীনহাইজ ইফেট কমানোর উপায় বর্ণনা কর।		[বাকাশিবো-২০০৭,২০১২, ২০১৪]
	উচর সমকেত ভা অনুশীলনী ৭ এর সংক্ষিত প্রশ্নোন্তর গ	_. ৬ নং দেষ্টব্য ।	1 11 11 14 11 400 1,4024, 4020,
৫৩।	থীনহাইস প্রতিক্রিয়া ব্যক্ত কর।		[বাকাশিবো-২০১২ (পরি)]
	অথবা, গ্রীনহাউঞ্জ ইফেক্ট কী?		[11411 1641-4034 (114)]
	ইত্তর সংক্রেও ৪) অনুশীলনী ৭ এর সংক্রিও প্রশ্নোতর	ন নং দুষ্টব্য।	
(181)	পরিবেশ বন্ধু হিমায়কের কী কী গুণাবলি থাকা প্রয়োজন		[বাকাশিবো-২০০৩, ২০১১]
	উচর সহকেত 🖁 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রস্নোত্তর ১		(11 11 14 11 - 4045) .
एए ।	CFC হিমায়ক কীভাবে পরিবেশের ক্ষতি করে?	•	০০৫,২০০৬, ২০০৭, ২০১১ (পরি)[
	অথবা, সিএফসি হিমায়ক কীভাবে পরিবেশকে ক্ষতি ক	র, দে খ।	্তব,২০০৬, ২০০৭, ২০১১ (পার)] [বাকাশিবো-২০১৫(পরি)]
	ঠিচর সম্প্রকত ঃ অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ১		turn manage and may

```
অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যাক্ত ব্রয়ারকভিশনিং
२२०
৫৬। ODP এবং GWP এর মধ্যে ২টি পার্থক্য লিখ।
                                                                                                     [বাকাশিবো-
       (উভর সহকেত 🚱 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দুটব্য।
৫৭। ক্লাউড পয়েন্ট ও পোরপয়েন্ট তেল নির্বাচনে কীভাবে প্রভাবিত করে?
       (উভন্ন সম্প্রকত 🚱) অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রউব্য ।
       কম্প্রেসর অয়েলের ৪টি বৈশিষ্ট্য লিখ এবং যে কোন একটির ব্যাখ্যা কর :
ঠিতর সহকেত 🛭 সুশীলনী ৮ এর সংক্ষিত্ত প্রশ্নোত্তর ৩ নং দুউব্য 🖡
       রেফ্রিজারেন্ট অয়েলের প্রকারভেদ লিখ।
       ঠিতর সম্প্রকত 😽 অনুশীলনী ৮ এর সংক্ষিত্ত প্রশ্নোতর ৪ নং দুউব্য ।
       আধুনিক হিমায়কের জন্য ব্যবহৃত তেলের গুণাবলি লেখ।
                                                                                                বাকাশিবো-২০১২
       অথবা, একটি ভাল কম্প্রেসর অয়েলের কী কী গুণাবলি থাকার প্রয়োজন লেখু।
                                                                                                      [বাকাশিবো
       অথবা, কম্প্রেসর অয়েল নির্বাচনের বিবেচ্য বিষয়গুলো লেখ।
                                                                                        [বাকাশিবো-২০০৮, ২০১১
       অধবা, রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি উল্লেখ কর ৷ বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০০৭,
       অথবা, কম্প্রেসর অয়েল নির্বাচনে যে চারটি বিষয়ে গুরুত্ব দিতে হয়, তা লিখ।
                                                                                                      বাকাশিবো-
       (উভন্ন সম্প্রেক্ত 🚱 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
৬১। বিক্রেইম ও রিসাইকেলিং এর মধ্যে পার্থক্য লিখ।
                                                                                                      [বাকাশিবো
       (উচর সহকেত 📳 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোতর ১ নং দুষ্টব্য 🗵
       R-12 ব্যবহৃত চক্রে R-134a এবং HC-blend হিমায়ক চার্জ করার তুলনামূলক পার্থক্য লিখ।
       (উচন্ন সম্প্রকত 🗗 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য ।
       আধুনিক তেল চার্জকরণ পদ্ধতি লিখ 🛭
                                                                                                বাকাশিবো-২০১০
        [উচর সম্মন্তত 🗿 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোক্তর ৩ নং দ্রষ্টব্য ।
       কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।
                                                          [বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১০ (পরি), ২০১২,
७8 ।
       অধবা, কৃত্রিম উপায়ে তুষার তৈরির পদ্ধতি বর্ণনা কর।
                                                                                              [বাকাশিবো-২০০৪,
       অথবা, বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ লেখ।
                                                                                                      বাকাশিবো-
        (ঠিচর সম্মকত 🖁) অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোক্তর ৪ নং দ্রষ্টব্য ।
       পুনঃলাভ এবং পুনঃচক্রায়নের ব্যাখ্যা দাও।
                                                                                       [বাকাশিবো-২০০৭, ২০১০,
        (উভন্ন সম্ফেক্ত 📴) অনুশীলনী ৯ এর সংক্ষিত্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।
৬৬। রেফ্রিজারেন্টকে কীভাবে রিকোভারি করা যায় চিত্রসহ লেখ।
                                                                                                [বাকাশিবো-২০১২
        (উছর সমকেত 🖁) অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।
       হিমায়ক রিকোভারী করার প্রয়োজনীয়তা লেখ।
                                                                                                       [বাকাশিবো
        (উভন্ন সম্ফেক্ত 🛭 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রুষ্টব্য ।
৬৮। দ্রাই আইস তৈরির কৌশল বর্ণনা কর।
                                                                                                      বাকাশিবো
        (ঠচর সক্ষতত 🛭 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য :
৬৯। একটি হিমায়ক রিকোভারী পদ্ধতি অঙ্কন কর।
                                                                                                      বাকাশিবো
        (উত্তর সম্প্রকত 🎒 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।
       যে কোন একটি হিমায়ক রিক্লেইম করা যায় না এবং কেন?
                                                                                                      বাকাশিবো
        (উভন্ন সম্বক্তেন্ত্র) অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রুষ্টব্য ।
```

	ূ সুপার সংজেশনস্	২২১
۱ که	রিকোডারী ও রিক্লেইম এর মধ্যে পার্থক্য দিখ।	[বাকাশিবো-২০০৩, ২০১৪]
	অথবা, রিকোভারী ও রিক্লেইম এর মধ্যে দু'টি পার্থক্য লিখ।	[বাকাশিবো-২০০৬, ০৭, ১২]
	অথবা, রিকোভারী ও রিফ্রেইম এর মধ্যে ১ টি পার্থক্য লিখ	[বাকাশিবো-২০০৫]
	ইডর সহকেত 🔊 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোতর ১১ নং দ্রষ্টব্য ।	
१२ ।	ওয়াটার টু এয়ার হিট পাম্পের চিত্রটি অঙ্কন কর।	
	্তিত্তর সম্প্রেক্ত ভা অনুশীলনী ১০ এর সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রন্তব্য ।	
ବତ ।		লিখ। [বাকাশিবো-২০০৯]
	উষ্ট সম্প্রকন্ত 🔊 অনুশীলনী ১০ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।	
98 I	হিট এক্সচেঞ্চারের শ্রেণিবিভাগ উল্লেখ কর।	
	অথবা, দু'টি হিট এক্সচেপ্সারের নাম দিখ।	[বাকাশিবো-২০০৯]
	উচর সম্ফেন্ড ট্র অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্লোত্তর ১ নং দ্রষ্টব্য।	
90 ।	রিজেনারেটর হিট এক্সচেঞ্জার বলতে কী বুঝায়?	
	উচন সংক্রেত ভ্র অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্লোন্তর ২ নং দ্রষ্টব্য।	
৭৬ ৷	প্যারালাল ফ্রেন, কাউন্টার ফ্রেন এবং ক্রুস ফ্রেন হিট এক্সচেঞ্চারের চিত্র অঙ্কন কর।	
	উচর সংক্রেত এ অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য।	
991	চিত্রসহ ডাইরেক্ট হিট এক্সচেঞ্জারের বর্ণনা দাও।	
	উচন সংক্রেড ৪ অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ব	
ዓ৮ ।	একটি হিট এক্সচেপ্তার ডিজাইন করতে কী কী ফ্যাক্টর বিবেচনা করা হয়? [বাকাশিবো-২০০৩	וכנהב הנהב פחחב אח
•	অধবা, একটি হিট এক্সচেঞ্জার নির্বাচনে বিবেচ্য বিষয়গুলো কী কী?	্বাকাশিবো-২০১৪ <u>]</u>
	্ <mark>টিছর সংক্রেড ছ</mark> অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দুষ্টব্য।	[4 4 64 -4030]
ዓኤ (চিত্রসহ কাউন্টার ফ্রো হিট এক্সচেঞ্চারের বর্ণনা দাও।	[বাকাশিবো-২০১২ (পরি)]
	উছর সম্বেক্ত 👂 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রম্ভব্য।	
bo !	হিট এক্সচেক্সার এর প্রয়োজনীয়তা লেখ।	[বাকাশিবো-২০১১]
-	ইছর সহকেত 🛭 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দুষ্টব্য।	(11 11 10 11 12 05 5 1
ኦን (হিট এক্সচেঞ্চারের সাইজ কী কী বিষয়ের ওপরে নির্ভর করে?	[বাকা শি বো-২০০৯]
	উত্তর সম্ক্রেন্ড ভ্র অনুশীলনী ১১ এর সংক্ষিত্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।	(41411 1641-2001)
৮২।	ক্রস ফ্রো হিট এক্সচেঞ্জারের চিত্রসহ প্রকারভেদ লেখ।	[বাকাশিবো-২০০৮]
	অথবা, ক্রুস ফ্রো হিট এক্সচেঞ্জারের চিত্র অন্ধন কর।	[বাকাশিবো-২০১৫(পরি)]
	ত্রির সংক্রেত 🛭 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রন্তব্য।	(
৮৩।	একটি হিট এক্সচেঞ্জার ব্যবহারে সুবিধাগুলো লিখ।	[বাকাশিবো-২০০৪]
	<u>উত্তর সংক্রেত হু</u> অনুশীলনী ১১ এর সংক্রিপ্ত প্রশ্নোতর ১০ নং দ্রষ্টব্য।	
৮8 ≀	ছিট এক্সচেঞ্জার এর ব্যবহার্ লিখ?	[বাকাশিবো-২০০৯]
	উচ্চ সংক্রেত ঃ অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশোশুর ১১ নং দ্রষ্টব্য।	(11 11 10 11 2001)
ታ ሮ ፣	ইভাপোরেটিভ কুলার এর ব্যবহার ক্ষেত্রগুলো উল্লেখ কর :	শিবো-২০০৯, ২০১০ (পরি)]
	অথবা, ইতাপোরেটিড কুলিং এর প্রয়োগক্ষেত্রগুলো লিখ।	[বাকাশিবো-২০০০৯]
	অথবা, ইভাপোরেটিভ কুলিং এর চারটি ব্যবহার ক্ষেত্র উল্লেখ কর।	[বাকাশিবো-২০০৭]
	অথবা, ইভাপোরেটিভ কুলিং এর ব্যবহার দিখ।	[বাকাশিবো-২০০৯]
	্টিছর সংক্রেত ভ অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য।	

]

1]

3]

অ্যাডভান্সড রেফ্রিজারেশন অ্যাড এয়ারকভিশনিং

৮৬। ইভাপোরেটিভ এসির সুবিধা এবং অসুবিধাসমূহ লিখ।
অথবা, ইভাপোরেটিভ কুলিং এর অসুবিধাগুলো লিখ।
অথবা, ইভাপোরেটিভ কুলিং সিস্টেমের অসুবিধা কী কী?
অথবা, ইভাপোরেটিভ কুলিং এর অসুবিধাগুলো লিখ।

२२२

বাকাশিবো-২০০৩, ০৫, ০৬ বাকাশিবো-২০০৮

অথবা, ইভাপোরেটিভ কুলারের অসুবিধাগুলো লেখ। ———— [বাকাশিবো-২০১৫(পরি)]

উচর সংক্রেত 🗿 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্লোতর ৫ নং দ্রষ্টব্য।

[বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১২]। বিকাশিবো-২০০৪, ২০০৭

৮৭। ইভাপোরেটিভ কুলার চিত্রসহ বর্ণনা কর। অথবা, ইভাপোরেটিভ কুলিং সিস্টেমের বিভিন্ন অংশের নাম ও কাজ লিব।

্ঠিচর সংকেত 👂 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

[বাকাশ্বিবো-২০১২ (পরি)]

৮৮। প্যাড টাইপ ইভাপোরেটিও কুলার চিত্র অঙ্চনপূর্বক বিভিন্ন অংশের নাম লেখ।

(উচন সম্ক্রেড ব্রি) অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্লোন্তর ৭ নং দ্রষ্টব্য।

[বাকাশিবো-২০০৪]

। 🛚 দুর্ই প্রকার ইভাপোরেটিভ কুলারের চিত্র অঙ্কন কর।

্রিষ্ঠর সংক্রেত ব্ল অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।
কুইক ফ্রিজিং এবং স্লো-ফ্রিজিং এর মধ্যে পার্থক্য কী?।

বাকাশিবো-২০১২ (পরি), ২০১৪ বাকাশিবো-২০০৪, ১০

অথবা, কুইক ফুজিং এবং শার্প ফ্রিজিং এর মধ্যে ৪টি পার্থক্য লিখ। **উচর সংক্রেন্ত ট্রা** অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দুষ্টব্য।

इंग्रेडिंग अनुविध्य अनुविध

১। P-H চার্টের সরল সম্পুক্ত হিমায়ন চক্র এঁকে বর্ণনা কর।

উচন্ন সম্বক্তে 🚱 অনুশীলনী ১ এর রচনামূলক প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

২। P-H এবং T-S ভায়াগ্রামের ট্রপিক্যাল চিত্রের বিভিন্ন অংশ চিহ্নিত করে তাদের কার্যপ্রণালি বর্ণনা কর।

উচর সংক্রেত । অনুশীলনী ১ এর রচনামূলক প্রশ্লোতর ৪ নং দ্রষ্টব্য ।

৩। P-H এবং T-S ডায়াগ্রামের বিভিন্ন ধরনের লাইন ও জোনের নাম লিখে কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

ঠিচর সংক্রেন্ত 🕝 অনুশীলনী 🕽 এর রচনামূলক প্রশ্লোত্তর ৫ নং দ্রষ্টব্য ।

৪। R – 12 ব্যবহৃত 1 টন ক্ষমতাসম্পন্ন একটি হিমায়ন যন্ত্র 0°C ইভাপোরেটিং তাপমাত্রা এবং 50°C কন্ডেনিং তাপমাত্রায় কাষ্ট করছে। নিচের তথ্যের ভিত্তিতে সরল বাষ্প সংকোচন হিমায়ন হিসেবে হিমায়ন যন্ত্রের COP এবং কম্প্রেসরের ক্ষমতা নির্ণা কর। যদি হিমায়ন যন্ত্রটিকে 5°C ইভাপোরেটিং তাপমাত্রা এবং 60°C কন্ডেনিং তাপমাত্রায় হিট পাম্প হিসেবে ব্যবহার কর হয়, তবে নিচের তথ্যানুযায়ী ওটির COP এবং কম্প্রেসরের ক্ষমতা নির্ণায় কর।

তথ্যাদি ঃ

হিমায়ন যজের ক্ষেত্রে	হিট পাম্পের ক্ষেত্রে
$h_1 = 186 \text{ kJ/kg}.$	$h_1 = 185 \text{ kJ/kg}.$
$h_2 = 215 \text{ kJ/kg}.$	$h_2 = 225 \text{ kJ/kg}.$
$h_3 = 215 \text{ kJ/kg}.$	$h_2 = 100 \text{ kJ/kg}.$

উচন্ন সম্কেত 😝 অনুশীলনী ১ এর রচনামূলক প্রশ্লোত্তর ৯ নং দ্রষ্টব্য ।

৫। লিকুইড ইন্টারকুলার ব্যবহৃত দৃ'ধাপে সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর।
অথবা, লিকুইড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিস্টেম চিত্রে দেখাও।

তিত্তর সম্প্রেক্ত 🕙 অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

ওয়াটার ইন্টারকুলার এবং লিকুইড সাবকুলার ব্যবদ্বত দু'ধাপে সংকোচন পদ্ধতি বর্ণনা কর। অধবা, ওয়াটার ইন্টারকুশার ও লিকুইড সাব-কুলারযুক্ত একটি টু স্টেজ কম্প্রেশন পদ্ধতি প্রবাহচিত্র ও p-h ডায়াগ্রামসহ বর্ণনা কর। [বাকাশিবো-২০০৯] (উভন্ন সমকেত 🛭) অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ২ নং দ্রষ্টব্য । ওয়াটার ইন্টারকুলার, লিকুইড সাব-কুলার এবং লিকুইড ফ্লান চেম্বার ব্যবহৃত দু'ধাপে সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর। ٩١ অথবা, ওয়াটার ইন্টার কুলার লিকুইড সারকুলার এবং ফ্লাল ইন্টারকুলারযুক্ত টু স্টেজ কম্প্রেলন পদ্ধতির প্রবাহচিত্র ও P-H ভায়াগ্রাম অংকন কর। {বাকাশিবো-২০০৭,২০০৮,২০১০,২০১২, ২০১৪} (উভন্ন সহকেত 🖪) অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৩ নং দ্রষ্টব্য । ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি বর্ণনা কর। **ኮ** | বাকাশিবো-২০০৬ অথবা, ওয়াটার ইন্টারকুলারসহ থ্রীন্টেজ কম্প্রেশন সিন্টেমের কার্যপ্রণালি চিত্রসহ কর্ণনা কর 🛭 [বাকাশিবো-২০০৩, ০৫, ০৭, ১০, ১১(পরি), ১২(পরি), ১৫(পরি)] (উছর সম্প্রেড 🗗 অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য । C.O.P বৃদ্ধির উপায়গুলো চিত্রসহ ব্যাখ্যা কর। (উভন্ন সম্কেত 🗗) অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৫ নং দুষ্টব্য । ১০ । একাধিক ইভাপোরেটর এবং কম্প্রেসর ব্যবহৃত পদ্ধতির নামগুলো লিখ। (উষ্ক সম্মেক্ত 🗗 অনুশীলনী ৩ এর রচনামূলক প্রশ্লোত্তর ১ নং দুষ্টব্য। ১১। বিভিন্ন তাপমাত্রায় ভিন্ন ভিন্ন কম্প্রেসর, এক্সপান্দান ভাল্ভ ও ইভাপোরেটর ব্যবহৃত পদ্ধতি চিত্রসহ বর্ণনা কর। ঠিছর সংক্রেন্ড 😽 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৪ নং দুষ্টব্য । ১২। কেসকেট রেফ্রিজারেশন পদ্ধতিতে কীভাবে নিমু তাপমাত্রা সৃষ্টি করে তা বর্ণনা কর। [বাকাশিবো-২০১১] অথবা, ক্যাসকেড সিস্টেমের চিত্রসহ বর্ণনা দাও। [বাকাশিবো-২০০৪, ০৮, ১০] অথবা, ক্যাসকেড সিস্টেমের বর্ণনা দাও। বাকাশিবো-২০০৩, ০৫, ০৬] (উচর সহকেত 💅 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৭ নং দুষ্টব্য। ১৩। খ্রী স্টেজ ক্যাসকেড সিস্টেম এর প্রবাহ চিত্র ও P-H ডায়াখ্রাম অঙ্কন করে কার্যপ্রণালি কর্ণনা কর। বাকালিবো-২০১১(পরি), ২০১৪] (উছর সম্ফেত 📴) অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৮ নং দুস্টব্য । একটি টু-স্টেজ বিশিষ্ট ক্যাসকেড সিস্টেম এর চিত্র সহকারে কার্যপ্রণালি লেখ। [বাকাশিবো-২০০৯] (ইছর সম্ফেত 🖁) অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৯ নং দুষ্টব্য : মান্টিস্টেজ কম্প্রেসন সিস্টেম চিত্রসহ বর্ণনা কর। 196 [বাকাশিবো-২০০৪(পরি), ২০১০] (উছর সম্মেক্ত 💇) অনুশীলনী ৩ এর রচনামূলক প্রশ্লোত্তর ১০ নং দ্রষ্টব্য। মান্টিপল এক্সপানশন ভালভ ব্যবহৃত পদ্ধতির বিস্তারিত বর্ণনা দাও। [বাকাশিবো-২০০৯] (উষ্ক সম্প্রকণ্ড 🗗 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ১১ নং দ্রষ্টব্য। ১৭ ৷ এয়ার টাইপ সোলার হিটিং পদ্ধতি বর্ণনা কর : 🕏 🗷 সংক্রেন্ড 🗗 অনুশীলনী ৪ এর রচনামূলক প্রশ্নোন্তর ২ নং দ্রষ্টব্য । ১৮। লিকুইড টার্বো সোলার হিটার এর কার্যপ্রণালি বর্ণনা কর। [বাকাশিবো-২০১১] **ঠিছর সম্ফেন্***ছ***ি অনুশীলনী ৪ এর রচনামূলক প্রশ্নোন্তর ৩ নং দুষ্টব্য**। সৌরশক্তি ব্যবহৃত হিউমিডিফায়ারের চিত্রসহ কার্যপদ্ধতি বর্ণনা কর।

উষ্টর সম্প্রেক্ত 🕙 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

```
অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং
২২৪
২০। সৌরশক্তি ব্যবহাত বাৎসরিক শীতাতপ নিয়ন্ত্রণ পদ্ধতি বর্ণনা কর।
       🕏 হর সম্প্রকত 🛐 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৪ নং প্রষ্টব্য।
      শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সৌরশক্তিকে কীভাবে প্রয়োগ করা যায়, এর সচিত্র বর্ণনা কর। [বাকশিবো-২০০৪, ০৭, ১২, ১৫(পরি)]
२५ ।
       অথবা, শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সোলার হীটকে কীভাবে ব্যবহার করা যায় তা চিত্রসহ বর্ণনা কর ৷(বাকাশিবো-২০১২ (পরি))
                                                                                      [বাকাশিবো-২০০৭, ২০১১ (পরি)]
       অধবা, সৌরশক্তি কাজে লাগিয়ে কীভাবে শীতাতপ নিয়ন্ত্রণ করা যায়, বর্গনা কর।
                                                                                                    [বাকাশিবো-২০০৯]
       অথবা, সৌরশক্তি ব্যবহার করে শীতশীকরণ পদ্ধতির সচিত্র বর্ণনা দাও ৷
       উচর সম্ফ্রেন্ড 💀 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।
       সোলার হীট ব্যবহৃত অ্যাবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণানি চিত্রসহ বর্ণনা কর।
                                                ্বাকাশিবো-২০০৩, ২০০৫, ২০০৬, ২০১০, ২০১০ (পরি), ২০১২, ২০১৪
       অথবা, সৌরশক্তির সাহায্যে চালিত ভ্যাপার অ্যাবজ্পশন পদ্ধতির হিমায়ন চক্রের কার্যপ্রণালি চিত্র সহকারে বর্ণনা কর।
                                                                                                     [বাকশিবো-২০০৯]
        😼 🕫 সম্প্রেক্ত 💆 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
                                                                                                     [বাকাশিবো-২০০৮]
       সৌরশক্তির মাধ্যমে চালিত বাষ্প সংকোচন পদ্ধতি চিত্রসহ বর্ণনা কর।
        🕏 হর সংক্রেত 💅 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।
       হিমায়কের নামকরণ পদ্ধতি বর্ণনা কর।
       অথবা, R-12 এবং R-717 হিমায়কের বাণিজ্যিক নামারের তাৎপর্য লিখ।
                                                                                                     বাকাশিবো-২০০৯]
        উচর সম্ফেন্ড 🚱 অনুশীলনী ৬ এর রচনামূলক প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।
       বিভিন্ন ধরনের হিমায়কের কালার কোড লিখ।
२∉ ।
        😼 🕫 সংক্রেত 🖁 ) অনুশীলনী ৬ এর রচনামূলক প্রশ্লোন্তর ২ নং দুষ্টব্য ।
       গ্রীনহাউজ ইফেক্ট বলতে কী বুঝ বর্ণনা কর।
        [ঠছর সম্বেক্ত 🛭] অনুশীলনী ৭ এর রচনামূলক প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।
       মনট্রিল প্রোটকল বর্ণনা কর।
        (উভর সংক্রেত 🚱 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোত্তর ২ নং দ্রউব্য ।
        ওজোন স্তরের ক্ষতিকারক এর উপর মনট্রিল প্রোটকন (Montreal Protocols) এবং ক্লিন এয়ার অ্যাষ্ট্র (Clean are act) কী,
                                                                                                     [বাকাশিবো-২০০৪]
        তা লিখ।
        (উচন্ত সংক্রেত 📴 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।
        ০৫টি পরিবেশ বান্ধব আধুনিক হিমায়কের নাম সংকেতসহ উল্লেখ কর।
        🕏 হর সংক্রেত 📴 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
        ODS, ODP, GWP, CFC এবং HFC, HCFC বলতে কী বুঝায়।
 901
         উচর সম্বেক্ত 🚱 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রটব্য।
        ওজোন স্তর ক্ষয়, গ্রীনহাউজ ইফেক্ট এবং গ্লোবাল ওয়ার্মিং বলতে কী বুঝ?
         😼 হর সম্প্রেত 🛃 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।
        ওজোন ন্তরের সাথে ক্লোরিনের রাসায়নিক বিক্রিয়া সমীকরণসহ উল্লেখ করে দেখাও।
         ভিতর সম্ভেত 🛃 অনুশীলনী ৭ এর রচনামূলক প্রশ্লোত্তর ৯ নং দ্রষ্টব্য ।
                                                                                                      বিকশিবো-২০০৭
 ৩৩। কম্প্রেসর ওয়েলের গুণাবলি বর্ণনা কর।
                                                                                                      বাকাশিবো-২০০৪
         অথবা, কম্প্রেসর ওয়েলের কী কী গুণাগুণ থাকা প্রয়োজন তা ব্যাখ্যা কর।
```

🕏 ভর সম্মেক্ত \iint অনুশীলনী ৮ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।

```
৩৪ 🕆 সিস্টেম থেকে হিমায়ক বের করার সময় কী কী নিরাপত্তামূলক ব্যবস্থা গ্রহণ করতে হয় লিখ।
       (ঠিছর সক্তরত 🗗 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৩ নং প্রটব্য ।
৩৫। R-12 ব্যবহৃত চক্রে R-134a চার্জ করার পদ্ধতি বর্ণনা কর।
       অথবা, একটি R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর।
                                                              [बाकानिरवा-२००७, २००৪, २००৫, २००७, २००१, २००৮]
       অথবা, R-12 সিস্টেমকে R-134a সিস্টেম কীভাবে রূপান্তর করা যায়। ধারাবাহিকভাবে দিখ।
                                                                                               [বাকাশিবো-২০০৪, ০৫]
       ঠিছর সক্তকত 🚱 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৪ নং প্রটব্য ।
৩৬। R-12 ব্যবহৃত চক্রে HC-blend চার্জ করার পদ্ধতি বর্ণনা কর।
                                                                                              [বাকাশিবো-২০১২ (পরি)]
       অপবা, হিমায়ক R-12 এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড (HC–Blend) চার্চ্ছ করার পদ্ধতি বর্ণনা কর :
                                                                                       [বাকাশিবো-২০১২ (পরি), ২০১৪]
       অধবা, হিমায়ক আর-১২ এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড চার্জ্প করার পদ্ধতি বর্ণনা কর।
                                                                                               [বাকাশিবো-২০১৫(পরি)]
       (ঠয়র সক্তক্ত 🗗) অনুশীলনী ৯ এর রচনামূলক প্রশ্লোন্তর ৫ নং দুটব্য ।
৩৭ : রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারি করার পদ্ধতি চিত্রের সাহায্যে বর্ণনা কর।
                                                        [বাকাশিবো-২০০৩, ০৫, ০৬, ০৯, ১০ (পরি), ১১ (পরি), ১২, ১৪]
       অথবা, বরফের সাহায্যে কীভাবে হিমায়ক পুনঃলাভ করা যায়, তা সচিত্র বর্ণনা কর।
                                                                                                    [বাকাশিবো-২০০৪]
       অথবা, একটি হিমায়ন চক্রের হিমায়ক রিকোভারি চিত্র সহকারে বর্ণনা কর।
                                                                                                    [বাকাশিবো-২০০৯]
       অথবা, বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ বর্ণনা কর।
                                                                                               [বাকাশিবো-২০১৫(পরি)]
       [উষ্কর সম্প্রেক্ত 🛃) অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৬ নং দুষ্টব্য ।
       প্রমাণ কর যে, হিট পাম্পের COP রেফ্রিজারেটরের COP-এর চেয়ে এক বেশি।
       (উভন্ন সমকেত 🛭 🗗 অনুশীলনী ১০ এর রচনামূলক প্রশ্লোত্তর ২ নং দ্রউব্য :
৩৯। হিট পাম্পের সুবিধা ও অসুবিধাসমূহ লিখ।
        (<del>ঠয়র সমকেত ছু)</del> অনুশীলনী ১০ এর রচনামূলক প্রশ্লোত্তর ৩ নং দুষ্টব্য ৷
       कृणिং ও হিটিং মুডসহ হিট পাম্পের কার্যপ্রণালি বর্ণনা কর।
                                                                          [ব্যকাশিবো-২০১২ (পরি), ২০১৪, ২০১৫(পরি)]
        (উভন্ন সম্কেন্ড 💅 অনুশীলনী ১০ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রউব্য ।
       হিট পাম্পের কার্যপ্রণালি চিত্রসহ বর্গনা কর।
                                                                                                     [বাকাশিবো-২০১১]
       (উভন্ন সক্ষকত 📴) অনুশীলনী ১০ এর রচনামূলক প্রশ্নোত্তর ৫ নং দুটব্য ।
       একটি হিট পাম্প সাইকেল অন্তন করে উহার কার্যপ্রণালি বর্ণনা কর।
                                                                                                     [বাঞ্চাশিবো-২০০৪]
        (উভন্ন সক্ষকত 🔄 অনুশীলনী ১০ এর রচনামূলক প্রশ্নোন্তর ৬ নং প্রউব্য :
৪৩। শিল্পকারখানায় হিট পাম্পের ব্যবহার বিস্তারিত আলোচনা কর।
                                                                                                     [বাকাশিবো-২০০৯]
        [উচ্চ সম্ফেত 🛮] অনুশীলনী ১০ এর রচনামূলক প্রশ্লোন্তর ৭ নং প্রটব্য :
88। হিট এক্সচেঞ্চার বলতে কী বুঝায়? বিভিন্ন ধরনের হিট এক্সচেঞ্চারের চিত্র অন্ধন পূর্বক বর্ণনা দাও।
       অথবা, হিট এক্সচেঞ্চারের চিত্র অঙ্কন পূর্বক বর্ণনা দাও।
                                                                                                     [বাকাশিবো-২০০৯]
       (উভন্ন সক্ষকত 🗟) অনুশীলনী ১১ এর রচনামূলক প্রশ্নোত্তর ১ নং দুটব্য।
৪৫। প্যারালাল ফ্রো কাউন্টার হিট এক্সচেঞ্জারের প্রবাহীর প্রবাহ ও তাপমাত্রা বন্টনের চিত্রসহ বর্ণনা দাও।
        (উভন্ন সমকেত 🖪) অনুশীলনী ১১ এর রচনামূলক প্রশ্নোন্তর ২ নং দুটব্য ।
৪৬।     হিট এক্সচেঞ্চারের লগ মিন বা লগারিদমিক মিন টেস্পারেচার ডিফারেল ∆ে,-এর সমীকরণ প্রতিপাদন করে দেখাও ।
        (উচর সহকেত 📴 অনুশীলনী ১১ এর রচনামূলক প্রশ্নোন্তর ৩ নং দুটব্য।
```

অ্যাডভাশ্ড রেফ্রিক্সারেশন অ্যান্ড এয়ারকভিশনিং–২৯

भगात्रामाम दुभ दिउँ এক্সাচেঞ্চারের কার্যপ্রণাদি বর্ণনা কর । বিকাশিবো-২ **্টিভর সম্ক্রেন্ড 🚱** অনুশীলনী ১১ এর রচনামূলক প্রশ্লোন্তর ৪ নং দ্রষ্টব্য । হিট এক্সচেঞ্জার ডিজাইন করতে বিবেচ্য বিষয়গুলো বর্ণনা কর। [বাকাশিবো-২ [**উভন্ন সম্ফে***ত ন্ত্র***] অনুশীলনী ১১ এর রচনামূলক প্রশ্লোন্তর ৫ নং দু**ষ্টব্য : উইভো টাইপ ইভাপোরেটিভ কুলার-এর চিত্রসহ বর্ণনা দাও। (**উভর সম্ফেত 🚱)** অনুশীলনী ১২ এর রচনামূলক প্রশ্লোত্তর ৩ নং দুষ্টব্য : প্যাড টাইপ ইভাপোরেটিভ কুলার-এর চিত্রসহ বর্ণনা দাও। [বাকাশিবো-২০১৫((ঠিছর সমকেত 📳 অনুশীলনী ১২ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য। ইভাপোরেটিভ কুলারের ব্যবহার বাংলাদেশে ব্যাপকভাবে প্রসার না ঘটার কারণ কী? (**উভন্ন সম্প্রেক্ত 🖁)** অনুশীলনী ১২ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টব্য 🛭 ইভাপোরেটিভ ক্লার নির্বাচন এবং ডিজাইনে বিবেচ্য বিষয়গুলো বর্ণনা কর। বাকাশিবো-২০০৮, ২০০৯, ২০১০ ((ঠিছর সম্ফেত 📴) অনুশীলনী ১২ এর রচনামূলক প্রশ্নোন্তর ৬ নং দুষ্টব্য । একটি ইডাপোরেটিভ কুদার এর গঠন এবং কার্য পদ্ধতি বর্ণনা কর। ৫৩। [বাকাশিবো-২ অথবা, একটি ইডাপোরেটিড কুলিং সিস্টেমের চিত্রসহ কার্যপ্রণালি বর্ণনা কর। বাকাশিবো-২ (ঠচর সম্ফেত 🚱 অনুশীলনী ১২ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য। ৫৪। এলাইস (Alice) ইভাপোরেটিভ কুলিং এর চিত্র অঙ্কন করে উহার কার্যপ্রণালি বর্ণনা কর। [বাকাশিবো-২০

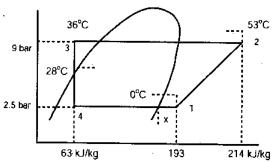
🔀 পাণিতিক সমস্যাবলি ঃ

- ১। 134a হিমায়ক ব্যবহৃত একটি শীতকের বাষ্পীভকা তাপমাত্রা (-10)° সেঃ এবং ঘনীভবন তাপমাত্রা 40° সেঃ। সাকশন দাইনে কেলভিন সুপারহিট হলে (a) রেফ্রিজারেটিং ইফেক্ট (Refrigerating effect RE) (b) কমপ্রেসর কর্তৃক কাজ (Work done b compressor WD) এবং (c) কো-ইফিশিয়েন্ট অব পারফরম্যাঙ্গ (Co-efficient of performance COP) নির্ণায় কর।

 [উচ্চর সমকেত] অধ্যায় ১ এর উদাহরণ ১.১ নং দ্রন্থব্য।
- ২। হিমায়ক-502 ব্যবহৃত একটি হিমায়ক চক্রের ঘনীভবন তাপমাত্রা 35° সেঃ এবং বাষ্পীভবন তাপমাত্রা (- 25)° কমপ্রেসরের সাকশনের সম্পৃক্ত হিমায়কের পরিবর্তে 7° সেঃ উত্তপ্ত (সুপারহিট) বাষ্প প্রবেশ করে এবং তরল হিমায় 15° পর্যন্ত অবশীতল করা হলে প্লান্টের (ক) RE (ব) WD এবং (গ) COP নির্ণয় কর।

উত্তর সম্প্রকৃত 🚱 অধ্যায় ১ এর উদাহরণ ১.৩ নং দ্রুষ্টব্য ।

(ঠিছর সম্ফেত 🛭 অনুশীলনী ১২ এর রচনামূলক প্রশ্নোন্তর ৮ নং দুষ্টব্য।


- ৩। বিমায়ক-১২ ব্যবহৃত একটি বাষ্প সংকোচন পদ্ধতির হিমায়ন চক্রে 7.5 এবং 1.5 ব্যারোমেট্রক চাপে যথাক্রমে ঘনীভূ বাষ্পীভবন ঘটে। বাষ্পীভূত হিমায়ক (-15)° সেঃ ইভাপোরেটর ত্যাগ করে এবং 30° সেঃ কভেন্দার ত্যাগ করে। হি চক্রের ইভাপোরেটরের ক্ষমতা 5 কিলোধয়াট হলে নির্ণয় কর— (ক) COP এবং (খ) হিমায়কের প্রবাহের পরিমাণ।

 বিভন্ন সক্রেক্ত ব্রী অধ্যায় ১ এর উদাহরণ ১.৫ নং দ্রম্ভব্য।
- 8। 175 কিলোওয়াট ক্ষমতাসম্পন্ন অ্যামোনিয়া ব্যবহৃত একটি হিমায়ন চক্রে ঘনীভবন তাপমাত্রা 30° সেঃ এবং এক্সপা ডিভাইসে সেচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। এ হিমায়ক (-8)° সেঃ কমপ্রেসরে ৪ করে। নির্পন্ন কর—

 [বাকাশিবো-২০১০(পরি), ২০১১(১০)
 - কে) চক্রেন COP (খ) কমপ্রেসরের পাওয়ার (Compressor power) (গ) ঘনীভবন ক্ষমতা (Condensing capacity) অথবা, অ্যামোনিয়া ব্যবহৃত একটি হিমায়ন চক্রে ঘনীভবন তাপমাত্রা 30°C এবং এক্সপানশান ভিভাইসে সেচুরিত তরল ও করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। এ হিমায়ক (-- 8°)C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। সম্পৃক্ত বাম্পের এনথ 1464 kJ/kg। সম্পৃক্ত তরলের এনথালপি 325 kJ/kg কম্প্রেসর দিয়ে কম্প্রেস্ত্র বাম্পের এনথালপি 1635 kJ/kg হলে বের বিশায়ক প্রবাহের পরিমাণ, (খ) COP., (গ) কম্প্রেসর এর ক্ষমতা ও ঘনীভবন ক্ষমতা।

উচর সম্ফেন্ড 🛭 অধ্যায় ১ এর উদাহরণ ১.৬ নং দ্র**ট**ব্য।

হিমারক-১২ ব্যবহৃত একটি হিমায়ন চক্রে হিমায়ক প্রবাহের পরিমাণ 0.854 কেজি/সেঃ। প্লান্টের ঘনীভবন ও বাস্পীভবন চাস হথাক্রমে 9.0 এবং 2.5 বার (bar)। মিটারিং ডিভাইসে তরল পৌছার পূর্বে ৪ ডিগ্রি অবলীতল করা হয় এবং কমপ্রেসরে
০° সেঃ এর হিমায়ক প্রবেশ করে। নির্ণয় কর— (ক) চক্রের COP। (খ) কমপ্রেসরের নির্গত গ্যাসের তাপমাত্রা এবং সুপারহিটের পরিমাণ। (গ) কমপ্রেসরের ক্ষমতা। (ঘ) কন্তেশারের ক্ষমতা।

ঠিচর সংক্রেন্ড 🔊 অধ্যায় 🕽 এর উদাহরণ ১.৭ নং দ্রষ্টব্য ।

.

1

৬ ৷

ታ1

][

প

8

≽]

একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইভাপোরেটিড তাপমাত্রা (– 10)° সেঃ এবং কভেনিং তাপমাত্রা 35° সেঃ। হিমায়ক কম্প্রেসরে প্রবেশের পূর্বে 5° সেঃ তাপমাত্রায় উত্তপ্ত হয়। সম্পৃক্ত তরলের এনখালপি 230 kJ/kg, সম্পৃক্ত বাম্পের এনখালপি 330 kJ/kg, সুপারহিটেড বাম্পের এনখালপি 360 kJ/kg হলে নির্ণয় কর ঃ (ক) হিমায়ক প্রবাহের হার অখবা, হিমায়কের পরিমাণ। (খ) কম্প্রেসরের ক্ষমতা, (গ) COP।

[বাকাশিবো-২০০৪, ২০০৭, ২০১০, ২০১২, ২০১০ (পরি),২০১২, ২০১৪, ২০১৫(পরি)]

তিহর সম্প্রেকত 🔊 অধ্যায় ১ এর উদাহরণ ১.১০ নং দ্রষ্টব্য ।

৭। R-12 ব্যবহৃত 1 টন ক্ষমতাসম্পন্ন একটি হিমায়ন যন্ত্ৰ 0°C ইভাপোরেটিং তাপমাত্রা এবং 50°C কভেন্সিং তাপমাত্রা কাজ করছে। নিচের তথ্যের ভিত্তিতে সরল বাম্প সংকোচন হিমায়ন হিসেবে হিমায়ক যন্ত্রের COP এবং কম্পেসরে ক্ষমতা নির্ণম কর। যনি হিমায়ন যন্ত্রটিকে -5°C ইভাপোরেটিং তাপমাত্রা এবং 60°C কভেন্সিং তাপমাত্রায় হিট পাম্প হিসেবে ব্যবহার করা হয়, তবে নিচের তথ্যান্যায়ী এর COP এবং কম্প্রেসরের ক্ষমতা নির্ণয় কর।

[বাকাশিবো-২০০৮] তথ্যগুলোঃ

হিমায়ন যন্ত্রের <i>ক্ষে</i> ত্রে	হিট পাম্পের ক্ষেত্র
$h_1 = 186 \text{ kJ/kg}$	$h_1 = 185 \text{ kJ/kg}$ $h_2 = 225 \text{ kJ/kg}$ $h_3 = 100\text{kJ/kg}$
$h_2 = 215 \text{ kJ/kg}$	$h_2 = 225 \text{ kJ/kg}$
$h_3 = 85 \text{ kJ/kg}$	$h_3 = 100 kJ/kg$

ঠিচর সংক্রেন্স এ অধ্যায় ১ এর উদাহরণ ১.১১ নং দ্রষ্টব্য ।

একটি R-12 সিস্টেমকে R-134a সিস্টেমে প্রতি ঘণ্টায় 100 MJ তাপে গরম করার জন্যে হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি 20°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাম্পের এনথালপি 357 kJ/kg সম্পৃক্ত তরলের এনথালপি 225 kJ/kg সুপারহিটের বাম্পের এনথালপি 377 kJ/kg হলে বের কর ঃ (ক) হিমায়কের পরিমাণ। (খ) কম্প্রেসরের ক্ষমতা। (গ) পিস্টন ডিসপ্রেসমেন্ট (আয়তনিক দক্ষতা .৭৫%)।(ঘ) COP [বাকাশিবো-২০০৩,২০০৫,২০০৬] তিরর সমক্রেত ব্রু অধ্যায় ১ এর উদাহরণ ১.১২ নং দ্রষ্টব্য।

আ্যামোনিয়া ব্যবহৃত একটি হিমায়ন চক্রে ঘণীভবন ভাপমাত্রা 30°C এবং এক্সপানশন ডিভাইসে সেচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। এ হিমায়ক (-8)°C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। সম্পৃক্ত তরলের এনথালপি 1464 kJ/kg, সম্পৃক্ত তরলে এনথালপি 325kJ/kg কম্প্রেসর দিয়ে কম্প্রেসত বাম্পের এনথালপি 1635 kJ/kg হলে বের কর ৪ (ক) হিমায়ক প্রবাহের পরিমাণ; (খ) COP; (গ) কম্প্রেসর এর ক্ষমতা ও ঘনীভবন ক্ষমতা।

ইছর সমকেত 👸 অধ্যায় ১ এর উদাহরণ ১.১৩ নং দ্রুষ্টব্য ।

- ১০। একটি R-12 হিমায়ক ব্যবহৃত সিস্টেম প্রতি ঘণ্টায় 100 MJ তাপে গরম করার জন্য হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি 15°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাস্পের এনধালপি 357kJ/kg, সম্পৃক্ত তরলের অ্যানথালপি 22kJ/kg, সুপারহিটেড বাস্পের অ্যানথালপি 377kJ/kg, হলে বের কর ৪
 - (ক) হিমায়কের পরিমাণ (খ) কমপ্রেসরের ক্ষমতা, (গ) পিস্টন ডিসপ্লেসমেন্ট, যদি আয়তনিক দক্ষতা 85% হয়, (ঘ) Cop (হিট পাম্প)

ঠিচর সংক্রেক 🔊 অধ্যার ১ এর উদাহরণ ১.১৪ নং দ্রষ্টব্য ।

১১। একটি R-12 হিমায়কের থার্মোভাইনামিক্স প্রপারটি সাকসন উষ্ণতার বাষ্পীয় হিমায়কের আপেক্ষিক আয়তন এবং এনথালপি যথাক্রমে 15°C উষ্ণতার V = 92.7 লি./কেজি এবং এনথালপি 223.54 kJ/kg। বাষ্পীয় হিমায়ক সংকোচনের পর এনথালপি 344.94 kJ/kg এবং হিমায়কের প্রসারণ এনথালপি 135.34 kJ/kg হয় তবে বাহির কর যে, (ক) কার্যকরী হিমায়ন (খ) কম্প্রসারের বাষ্প (গ) হিমায়কের প্রবাহের পরিমান (ঘ) COP।

ভিতর সম্ফেত 🔊 অধ্যায় ১ এর উদাহরণ ১.১৫ নং দুটব্য ।

- ১২। নিম্নলিখিত ডাটাসমূহ ওয়াটার ইন্টারকুলারসহ একটি টু স্টেজ অ্যামোনিয়া কম্প্রেশন রেফ্রিজারেশন সিস্টেমের—
 কভেশিং প্রেসার = 14 bar; ইভাপোরেটর প্রেসার = 2 bar; ইন্টারকুলার প্রেসার = 15 bar; ইভাপোরেটর লোড = 2 Tk.;
 যদি ডি-সুপারহিটেড বাস্প ও সাবকুলড তরল হিমায়কের তাপমাত্রা 30°C হয়, তাহলে বের কর—
 ১। সিস্টেম পরিচালনার জন্য প্রয়োজনীয় পাওয়ার। ২। সিস্টেমের C.O.P
 - <mark>ঠিছর সমকেত হ্রী</mark> অধ্যায় ২ এর উদাহরণ ২,২ নং দ্রষ্টব্য ।
- . ১৩। যদি সম্পৃক্ত বাম্পের এনথালপি 357 kJ/kg । সম্পৃক্ত তরলের এনথালপি ২২০kJ/kg এবং সুপার হিটেড বাম্পের এনথালপি 377 kJ/kg হলে হিট পাম্পের wp কত হবে।

ঠিচর সমকেত 🚱 অধ্যায় ১০ এর উদাহরণ ১০.১ নং দ্রষ্টব্য ।

১৪। একটি রেফ্রিজারেটরে ইভাপোরেটর প্রতি মিনিটে 22kg শোষণ করে এবং কন্ডেন্সার প্রতি মিটিটে 27 kg পরিত্যাগ করে। তাহলে রেফ্রিজারেন্ট কপ এবং হিট পাম্পের কপ কত হবে।

(উচন্ন সমকেত 🔊 অধ্যায় ১০ এর উদাহরণ ১০.২ নং দ্রষ্টব্য ।

১৫। টিউবযুক্ত একটি হিট এক্সচেঞ্চারের ভেতর দিয়ে 20 kg/min হারে এগজস্ট গ্যাস প্রবাহিত হয়ে ঠাতা হয় এবং 450°C তাপমাত্রা থেকে 150°C তাপমাত্রায় পরিণত হয়। ঠাতা করার কাজে পানি ব্যবহৃত হয় যার প্রাথমিক তাপমাত্রা 20°C। গ্যাসের আপেক্ষিক তাপ 1.23 kJ/kgk এবং সার্বিক তাপ স্থানান্তর তাগঙ্ক 140W/m² K. যদি পানি 25 kg/min হারে প্রবাহিত হয়, তবে হিট এক্সচেঞ্চারের সারক্ষেস এরিয়ার পরিমাণ নির্ণয় কর ঃ (i) প্যারালাল ফ্রো এর জন্য (ii) কাউন্টার ফ্রো এর জন্য।

ঠিছর সংক্রেত ট্রা অধ্যায় ১১ এর উদাহরণ ১১.১ নং দ্রষ্টব্য ।

পলিটেকনিকের সকল বই ডাওনলোড করতে ভিজিটঃ

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ষষ্ঠ পর্ব সমাপনী পরীক্ষা-২০০৩ (চার বছর মেয়াদি)

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল প্রশ্লের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্লের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

রিকোভারী ও রিক্রেইম এর মধ্যে পার্থক্য লিখ।

উচন সমকেত ন্ত্র) অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ১১ নং দ্রষ্টব্য :

২। হিমায়ন চক্রের উপর হিমায়কের ইভাপোরেটিং ও কভেন্সিং প্রেসারের প্রভাব কী?

😎র সহকেত 🚱 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৩ নং দ্রষ্টব্য।

৩। শ্লোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বুঝায়?

🗦 🕏 সংক্রেন্ত 🕫 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রন্টব্য :

8 ৷ হিমায়ক 134a এর রাসায়নিক সংকেত ও ক্ষুটনান্ধ লিখ ৷

ইচর সমকেত ছ অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

ইমায়ক রিক্রেইম বলতে কী বুঝায়?

উত্তর সম্কেত ন্ত্র অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দুষ্টব্য।

৬। হিমায়ক 134a এর সঙ্গে ব্যবহৃত তেলের নাম লিখ।

উচন্ন সম্ফেক্ত 🚱 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৬ নং দ্রুষ্টব্য।

৭। হিট পাম্পের প্রয়োগ ক্ষেত্রগুলো লিখ।

উচন্ন সম্ফেত ছ) অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রন্টব্য ।

৮। রেট্রোফিট (Retrofit) বলতে কী বুঝায়?

😎 সম্প্রেক্ত 🔊 অনুশীলনী ৯ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৫ নং দ্রন্টব্য।

। লগ মিন টেম্পারেচার ডিফারেল (LMTD) কাকে বলে?

্**উচর সম্কেত এ** অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রাষ্টব্য ।

১০। ইডাপোরেটিভ কুলিং সিস্টেমের অসুবিধা কী কী?

উভর সংকেত 🕝 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

খ-বিভাগ (মান **ঃ** ১০ × ২ = ২০)

১১। দিকুইড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিস্টেমের বর্ণনা দাও।

উচর সম্কেত । অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্লোতর ৪ নং দ্রষ্টব্য।

১২। সোলার এনার্জি ব্যবহারপূর্বক ভ্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের চিত্র অন্ধন করে বিভিন্ন অংশ চিহ্নিভ কর।

উত্তর সহকেত 🚱 অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রন্তব্য।

১৩। ক্যাসকেড সিস্টেমের বর্ণনা দাও।

🕏 হর সহতে 🔗 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।

১৪ । একটি আধুনিক হিমায়কের রাসায়নিক গুণাবলির বর্ণনা দাও।

উচন সমকেত হ্রী অনুশীলনী ৬ এর সংক্ষি**ন্ত প্রশ্নোত্তর ৮** নং দ্রষ্টব্য :

১৫। সি.এফ.সি হিমায়ক কীভাবে পরিবেশের ক্ষতি করে?

ঠিচর সহকেত 🗗 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রাষ্টব্য ।

১৬। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি লিখ।

🕏 রর সম্বেক্ত 🛐 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য।

১৭। কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।

(ঠিতর সক্তেত 🛭 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

১৮ : ইভাপোরেটিভ কুশার চিত্রসহ বর্ণনা কর।

উচর সম্প্রকত 🛭 অনুশীলনী ১২ এর সংক্ষিত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

১৯। মান্টিস্টেজ কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাগুলো লিখ।

ঠিতর সমক্রেড ব্র অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রুষ্টব্য ।

২০। একটি হিট এক্সচেঞ্চার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়?

উচর সম্ফেন্ড ভ্র অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

গ-বিভাগ (মান 8 8 × ৫ = ২০)

২১। ওয়াটার ইন্টারকুলারসহ থ্রী স্টেব্ধ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

উচর সদক্তেত । অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৪ নং দুষ্ট্ব্য ।

২২। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারী চিত্রের সাহায্যে বর্ণনা কর।

ঠিচর সমকেত 🛭 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

২৩। $R{=}12$ সিস্টেমকে $R{=}134a$ সিস্টেমে কীডাবে ন্ধপান্তর করা যায়, ধারাবাহিকভাবে লিখ ${=}1$

ঠিত্তর সহকেত 🔊 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দুষ্টব্য ।

২৪। সোলার হিট ব্যবহৃত অ্যাবজর্পশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

ঠিচর সম্কেত 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্লোত্তর ৬ নং দ্রষ্টব্য ।

- ২৫। একটি R-12 হিমায়ক ব্যবহৃত সিস্টেম প্রতি ঘণ্টায় 100 MJ তাপে গরম করার জন্য হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি 15°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাম্পের অ্যানধালপি 357kJ/kg, সম্পৃক্ত তরলের এনধালপি 22kJ/kg, সুপারহিটেড বাম্পের এনধালপি 377kJ/kg, হলে বের কর ঃ
 - (ক) হিমায়কের পরিমাণ (ব) কম্প্রেসরের ক্ষমতা, (গ) পিস্টন ডিসপ্লেসমেন্ট, যদি আয়তনিক দক্ষতা ৪5% হয়, (ঘ) COP (হিট পাম্প)।

ঠিচর সংক্রেন্ড 🗿 অনুশীলনী ১ এর উদাহরণ ১.১৪ নং দুষ্টব্য 🗵

ডিপ্লোমা-ইন্-ইঞ্জিনিয়ারিং শিক্ষাক্রম ষষ্ঠ পর্ব সমাপনী পরীক্ষা-২০০৪ (চার বছর মেয়াদি) টেকনোলজিঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

সময়ঃ ৩ ঘণ্টা

পূৰ্ণমান ৪ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও 🕫

ক-বিভাগ (মান **ঃ** ১০ × ১ = ১০)

২। হিমায়ন চক্রে ফ্লাশ চেম্বার ব্যবহারের কারণ কী?

ঠিচর সংক্রেত 🖁 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রুটব্য ।

৩ ৷ ডাইরেষ্ট স্টেজিং বলতে কী বুঝায়?

ঠিয়র সমকেত 🕙 সিলেবাস বহির্ভৃত।

8 ৷ রেফ্রিজারেটিং ইফেক্ট (Effect) কী?

ঠিচর সম্মেকত 🗟 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য :

৫ + ODS কী?

ঠিচর সমকেত 🖫 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্লোতর ৯ নং দ্রষ্টব্য ।

৬। ফ্রোট চেমার ব্যবহারের কারণ কী?

ভিচর সম্ফেত 🖥 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

৭: এয়ার সোলার কালেন্টর কী?

(ইয়র সমকেত 🚱) অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

৮। একটি যান্ত্রিক হিমায়ন চক্রে যে থার্মোডিনামিক প্রক্রিয়া বিদ্যমান, তা লিখ।

ঠিচর সহকেত 🚱 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৪ নং দ্রষ্টব্য।

৯। হিট অব কভেন্সেশন বলতে কী বুঝায়?

ভিষন সম্পক্তে । অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য।

১০। ফ্লক পয়েন্ট কী?

ঠিছর সংক্রেত 🔊 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য :

খ-বিভাগ (মান **ঃ** ১০ × ২ = ২০)

১১। ক্যাসকেড সিস্টেম ব্যবহারের সুবিধাগুলো লিখ।

ঠিতর সম্মক্রত ত্ব) অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

১২। ইভাপোরেটিভ কুলিং সিস্টেমের বিভিন্ন অংশের নাম ও কাজ লিখ।

ঠিতর সংক্রেত 🔊 অনুশীলনী ১২ এর সংক্রিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

১৩। কুইক ফ্রিজিং এবং শার্প ফ্রিজিং এর মধ্যে ৪টি পার্থক্য লিখ।

ঠিচর সংক্রেত 🕫 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য ।

১৪। যে কোন একটি হিমায়ক রিক্রেইম করা যায় না এবং কেন?

উত্তর সংক্রেত 🚱 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রষ্টব্য ।

১৫। একটি হিট এক্সচেঞ্চার ব্যবহারের সুবিধাগুলো লিখ।

উত্তর সমকেত 🔊 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং প্র**ট**ব্য।

১৬। ফ্র্যাট প্রেট কালেক্টরের কাজ লিখ।

উচর সংক্রেত 🚮 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্লোত্তর ৯ নং দ্রষ্টব্য।

১৭। কম্প্রেসর অয়েল নির্বাচনে যে চারটি বিষয়ের শুরুত্ব দিতে হয়, তা লিখ।

ঠিতর সংক্রেত 🖁 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোতর ৬ নং দ্রুষ্টব্য ।

১৮ । হিট পাম্পের প্রয়োগ ক্ষেত্রগুলো লিখ ।

ভিতৰ সংক্ষেত 🔊 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং <u>দ</u>ুষ্টব্য ।

১৯। হিমায়ক-১১ এর ব্যবহার বন্ধ করার বৈজ্ঞানিক যুক্তি কী?

ভিতর সংক্রেত 🛭 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১৫ নং দুষ্টব্য ।

২০ : ODP এবং GWP এর মধ্যে ২টি পার্থক্য লিখ।

উত্তর সম্ফেত 💅 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য ।

গ-বিভাগ (মান $8.8 \times \alpha = 20$)

২১। গুজোন স্তরের ক্ষতিকারক এর উপর মনট্রিল প্রোটোকল (Montreal protocols) এবং ক্লিন এয়ার অ্যাষ্ট (Clean air act) কী, তা লিখ।

🕭 হর সংক্রেত 🕫 অনুশীলনী ৭ এর রচনামূলক প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

২২। R-12 সিস্টেমকে R-134a সিস্টেম কীভাবে রূপান্তর করা যায়, ধারাবাহিকভাবে শিখ।

উচর সম্মেত 🚱 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

২৩। ক্যাসকেও সিস্টেমের চিত্রসহ বর্ণনা দাও।

🕏 হর সম্ফেত 🚱 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য :

২৪। বরক্ষের সাহায্যে কীভাবে হিমায়ক পুনঃলাভ করা যায়, তা সচিত্র বর্ণনা কর।

ঠিতর সহক্রেত 🖁 অনুশীলনী ৯ এর রচনামূলক প্রশ্লোত্তর ৬ নং দ্রষ্টব্য।

২৫। একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইভাপোরেটিং তাপমাত্রা (-10)° সেঃ এবং কডেনিং তাপমাত্রা 35° সেঃ। হিমায়ক কম্প্রেসরে প্রবেশের পূর্বে 5° সেঃ তাপমাত্রায় উত্তপ্ত হয়। সম্পৃক্ত তরলের এনথান্সপি 230 kJ/kg, সম্পৃক্ত বাম্পের এনথান্সপি 330 kJ/kg; সুপারহিটেড বাম্পের এনথান্সপি 360 kJ/kg হলে নির্ণয় কর ঃ

(ক) হিমায়কের পরিমাণ (খ) কম্প্রেসরের ক্ষমতা (গ) COP |

উচর সম্প্রকত 🛭 অনুশীলনী ১ এর উদাহরণ ১০ নং দ্রষ্টব্য ।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম সপ্তম পর্ব সমাপনী পরীক্ষা-২০০৪ (চার বছর মেয়াদি)

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড় রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

সময় ৪ ৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন 8 (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান : ১০ × ১ = ১০)

ইমায়ন চক্রে ইন্টারকুলারের কাজ কী?

ঠিচর সংক্রেত 🛐 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ২ নং দ্রষ্টব্য ।

২। R – 22 হিমায়কের সুগুতাপ বেশি হওয়া সত্ত্বেও আবাসিক রেফ্রিজারেটর ব্যবহৃত হয় না কেন?

তিষ্কর সহকেত 🖁 অনুশীঙ্গনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৮ নং দ্রষ্টব্য :

৩। ফ্লাশ গ্যাস বলতে কী বুঝায়?

🔁 उत्तर সংক্রেক 🕙 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১২ নং দ্রষ্টব্য ।

৪। গ্রীনহাউস প্রতিক্রিয়ার ফলে পরিবেশের কী পরিবর্তন হচ্ছে?

উচর সংক্রেড 🚱 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্র**উ**ব্য ।

৫। আদর্শ রেফ্রিজারেন্টের ভৌত গুণাবলি কী?

ঠিতর সহকেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্লোত্তর ৭ নং দ্রষ্টব্য ।

৬। ক্যাসকেড সিস্টেমের সংজ্ঞা দাও।

ঠিচর সহকেত 🛭 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য।

৭। দ্রাই আইস কাকে বলে?

উত্তর সম্পক্তেত 🚱 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

৮। CFC বলতে কী বুঝায়?

উচর সমকেত 🔊 অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

৯। ইভাপোরেটিভ কুলিং এর সংজ্ঞা দিখ।

তিভর সমক্রেত 🖟 অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুষ্টব্য ।

১০। আধুনিক হিমায়কের সঙ্গে ব্যবহৃত দুটি তেলের নাম লিখ।

ইত্তর সম্প্রেকত 🚱 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৬ নং দ্রষ্টব্য ।

খ-বিভাগ (মান ১০ 🗴 ২ = ২০)

১১। ভেপার কম্প্রেশন সাইকেলে সাব-কুন্ড ও সুপারহিটের সুবিধা-অসুবিধাগুলো লিখ।

🕏 इत সদকেত 🖁 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

১২। ওয়াটার ইন্টারকুলার ব্যবহৃত দুই ধাপের বাষ্প সংকোচন পদ্ধতির প্রবাহ<mark>চিত্র অন্ধন</mark> কর।

ইতর সমক্রেত জ্ব অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্লোন্তর ৪ নং দ্রাষ্টব্য :

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং--৩০

```
অ্যাডভালড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং
```

২৩৪

১৩। ক্যাসকেট সিস্টেমের চিত্র অঙ্কন করে বিভিন্ন অংশ চিহ্নিত কর।

ঠিচর সম্প্রেক 🕏 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোতর ৯ নং ব্রষ্টব্য।

১৪। রেফ্রিস্পারেন্ট রিকোডারী ও রিক্রেইম (Reclaim) বলতে কী বুঝায়?

উচর সমকেত 🖥 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ ও ৩ নং দ্রউব্য ।

১৫ : হ্যালোকার্বন রেফ্রিভারেন্টের নামারিং করার পদ্ধতি উদাহরণসহ লিখ ।

উচর সম্ফেত হ্রি অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১২ নং দ্রষ্টব্য।

১৬। বাংলাদেশের সোলার হিটের প্রয়োগক্ষেত্রসমূহ লিখ।

উচর সংক্রেত 👂 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রুষ্টব্য ।

১৭। কৃত্রিম উপায়ে তৃষার তৈরির পদ্ধতি লিখ।

উচর সংক্রেত 🛭 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রদ্মোন্তর ৪ নং দ্রষ্টব্য ।

১৮। দুই প্রকার ইভাপোরেটিড কুলারের চিত্র অন্ধন কর।

উচর সম্ফেত 🖁 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রল্লোন্ডর ৮ নং দ্রউব্য ।

১৯। একটি হিমায়ক রিকোভারী পদ্ধতি অঙ্কন কর।

উচর সম্ফেত ও অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য।

২০। আধুনিক রেক্রিজারেন্টের চারটি সুবিধা লিখ।

ঠিচর সমকেত 🔊 অনুশীলনী ৬ এর সংক্ষিত্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য।

গ-বিভাগ (মান ৪ 🗴 ৫ = ২০)

২১। একটি হিট পাম্প সাইকেল অঙ্কন করে এর কার্যপ্রণালি বর্ণনা কর।

उठत সহকেত 🔊 অনুশীলনী ১০ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

২২। অ্যালাইস (Alice) ইভাপোরেটিভ কুলিং ঞৰ চিত্র অন্তন করে এর কার্যপ্রণালি বর্ণনা কর।

উচর সম্ফেত ট্রী অনুশীলনী ১২ এর রচনামূলক প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।

২৩। শীতাতপ নিয়ন্ত্রণ ব্যবস্থার সৌরশক্তিকে কীভাবে প্রয়োগ করা যায়, এর সচিত্র বর্ণনা দাও।

ঠিতর সহকেত 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টবা।

২৪। কম্প্রেসর ওয়েদের কী কী গুণাগুণ থাকা প্রয়োজন, তা ব্যাখ্যা কর।

উচর সমকেত । অনুশীলনী ৮ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

২৫। মান্টিস্টেজ কম্প্রেশন সিস্টেম চিত্রসহ বর্ণনা কর।

ঠিচর সক্ষেত 🕝 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ১০ নং দ্রষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম পঞ্চম ও সপ্তম পর্ব সমাপনী পরীক্ষা-২০০৫

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যাক্ত এয়ারকভিশনিং

আরএটি-৬৫৩

সময় ঃ ৩ ঘণ্টা

পূর্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ১০ × ১ = ১০)

১। রিকোভারী ও রিক্রেইম এর মধ্যে ১টি পার্ঘক্য লিখ।

ঠিয়র সহকেত 🗗 অনুশীলনী ৯ এর সংক্ষিত্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য ।

২ ৷ হিমায়ন চক্রের উপর হিমায়কের ইভাপোরেটিং ও কভেদিং প্রেসারের প্রভাব কী?

(উচর সমক্তেত 🔊 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোব্তর ১৩ নং দ্রষ্টব্য ।

৩। গ্লোবাল ওয়ার্মিং পটেনলিয়াল (GWP) বলতে কী বুঝায়?

ঠিচর সম্প্রেক্ত 👨 অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

8। হিমায়ক 134a এর রাসায়নিক সংকেন্ড ও স্কুটনাম্ভ লিব।

🕏 হর সক্তকত 🕫 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৪ নং দ্রষ্টব্য ।

৫ । হিমায়ক রিক্রেইম বলতে কী বৃঝায়?

(ঠচর সম্প্রেক্ত 💋 অনুশীলনী ৯ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

৬। হিমায়ক 134a এর সঙ্গে ব্যবহৃত তেলের নাম দিব।

ভিত্তর সম্মেক্ত 🗟 অনুশীলনী ৬ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ১৬ নং দ্রষ্টব্য।

৭। হিট পাম্পের প্রয়োগ ক্ষেত্রগুলো লিখ।

🗦 ইয়র সমক্রেত 📴 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

৮ ৷ রেট্রোফিট (Retrofit) বলতে কী বুঝায়?

(ঠঁচর সদক্তে 🚱 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

৯ ৷ লগ মিন টেম্পারেচার ডিফারেন্স (LMTD) কাকে বলে?

🕏 হর সম্ফেত 🚱 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য ।

১০। ইভাপোরেটিভ কৃদিং সিস্টেমের অসুবিধা কী কী?

(ঠিচর সম্মেকত 👸 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং প্রউব্য :

খ-বিভাগ (মান ১০ x ২ = ২০)

১১। পিকুইড ইন্টারকুলারসহ টু ন্টেঞ্চ কম্প্রেশন সিস্টেমের বর্ণনা দাও।

ঠিয়র সম্মকত ৪ অনুশীলনী ২ এর সংক্ষি**ন্ত** প্রশ্নোতর ৪ নং দ্রষ্টব্য ।

১২। সোলার এনার্জি ব্যবহারপূর্বক ভ্যাপার কম্প্রেশন রেফ্রিক্সারেশন সিস্টেমের চিত্র অন্ধন করে বিভিন্ন অংশ চিহ্নিত কর।

🕏 চর সহকেত 🚱 অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোতর ৪ নং দুষ্টব্য।

আডভাঙ্গড রেফ্রিজারেশন অ্যান্ড ্রারকন্তিশনিং

১৩। ক্যাসকেড সিস্টেমের বর্ণনা দাও i

উচর সম্প্রকত है। অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

১৪। একটি আধুনিক হিমায়কের রাসায়নিক গুণাবলির বর্ণনা দাও।

উচর সংক্রেত ত অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রষ্টব্য ।

১৫ া সি.এফ.সি হিমায়ক কীভাবে পরিবেশের ক্ষতি করে?

ইতর সদক্রেত 👸 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রস্নোতর ৯ নং দ্রষ্টব্য।

১৬। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি লিখ।

্টরর সংক্রেত 👂 অনুশীলনী ৮ এর সংক্ষিত্ত প্রশ্নোন্তর ৬ নং দ্রন্তব্য।

১৭। কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।

ইতর সম্পক্তের ব্র অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

১৮। ইভাপোরেটিভ কুলার চিত্রসহ কর্ণনা কর।

্তিতর সম্প্রকৃত 🔊 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

১৯। মান্টিস্টেজ কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাগুলো নিখ।

তিভন্ন সমকেত ব্র অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দুষ্টব্য।

২০। একটি হিট এক্সচেঞ্জার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়?

্<mark>টিতর সদক্রত হু</mark> অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।

গ-বিভাগ (মান **ঃ** ৪ × ৫ = ২০)

২১। ওয়াটার ইন্টারকুলারসহ প্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

🔁 বর সম্প্রেক্ত 👂 অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রন্তব্য ।

২২। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারী চিত্রের সাহায্যে বর্ণনা কর।

্ট্রির সম্ফেত 👨 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

২৩। R-12 সিস্টেমকে R-134a সিস্টেমে কীভাবে রূপান্তর করা যায়, ধারাবাহিকভাবে লিখ।

উচর সম্প্রকত ন্ত্র অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রন্তব্য ।

২৪। সোলার হিট ব্যবহৃত অ্যাবজর্পশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

উভন্ন সংক্রেন্ত জনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

- ২৫। একটি R-12 হিমায়ক ব্যবহৃত সিস্টেম প্রতি ঘণ্টায় $100~{
 m MJ}$ তাপে গরম করার জন্য হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে। সাইকেলটি $15^{\circ}{
 m C}$ হতে $50^{\circ}{
 m C}$ তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাম্পের অ্যানথালপি $357{
 m kJ/kg}$, সম্পৃক্ত তরলের এনথালপি $225{
 m kJ/kg}$, সুপারহিটেড বাম্পের এনথালপি $377{
 m kJ/kg}$, হলে বের কর ${
 m s}$
 - (ক) হিমায়কের পরিমাণ (খ) কম্প্রেসরের ক্ষমতা, (গ) পিস্টন ডিসপ্লেসমেন্ট, যদি আয়তনিক দক্ষতা ৪5% হয়, (য) COP (হিট পাম্প)।

্টিভর সম্প্রকৃত 🚱 অনুশীলনী ১ এর উদাহরণ ১.১৪ নং দ্রষ্টব্য ।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম পঞ্চম ও সপ্তম পর্ব সমাপনী পরীক্ষা-২০০৬ টেকনোপজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকডিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

আরএটি-৬৫৩

সময় ৪ ৩ ঘটা

পূৰ্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

১ ৷ হিমায়ক রিক্রেইম বলতে কী বৃঝায়?

উচ্চ সম্বক্তে ন্ত্র অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রন্টব্য।

২। রিকোভারী ও রিক্রেইম এর মধ্যে দু'টি পার্থক্য লিখ।

ঠিচর সংক্রেত 🖁 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্লোত্তর ১১ নং দ্রষ্টব্য ।

৩। গ্লোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বুঝায়?

ঠিচর সম্প্রেক্ত 🛭 অনুশীলনী ৭ এর অভি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দুষ্টব্য ।

8। রেট্রোফিট (Retrofit) বলতে কী বুঝায়?

🕏 চর সম্বেক্ত 🎒 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

৫। গ্লোবাল ওয়ার্মিং পটেনশিয়াল বলতে কী বুঝায়?

্ঠিছর সম্প্রেক্ত 🛭 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ও নং দ্রষ্টব্য।

৬। লগ মিন টেম্পারেচার ডিফারেন্স (LMTD) কাকে বলে?

ইডর সংক্রেড ব্র অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য ।

৭। হিমায়ক 134a এর রাসায়নিক সংক্রেত ও ক্ট্রনায় লিব।

😎 সংক্রেড 🕝 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রাষ্টব্য ।

৮। হিমায়ক 134a এর সঙ্গে ব্যবহাত তেলের নাম লিখ।

ঠিচর সংক্রেত 🖁 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৬ নং দুষ্টব্য।

৯। হিট পাম্পের প্রয়োগক্ষেত্রগুলা লিখ।

ত্রিরর সংক্রেত 💋 অনুশীলনী ১০ এর অতি সংক্রিপ্ত প্রশ্নোতর ৪ নং দ্রষ্টব্য।

১০। ইভাপোরেটিভ কুনিং সিস্টেমের অসুবিধা কী কী?

্তিতর সমকেত 🔊 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রদ্নোত্তর ৫ নং দুষ্টব্য ।

খ-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। সি.এফ.সি হিমায়ক কীভাবে পরিবেশের ক্ষতি করে?

উচ্চ সংক্রেত 👸 অনুশীলনী ৭ এর সংক্ষিত প্রশ্নোতর ৯ নং দ্রষ্টব্য।

১২। কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।

উচর সংক্রেত 🛭 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য।

১৩। ক্যাসকেড সিস্টেমের বর্ণনা দাও।

উচর সংক্রেন্ড ব্র অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য 1

১৪। লিকুইড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিস্টেমের বর্ণনা দাও।

🕇 উচর সংক্রেক্ত 🕫 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

১৫। একটি আধুনিক হিমায়কের রাসায়নিক গুণাবলির বর্ণনা দাও।

ঠিচর সম্প্রেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোতর ৮ নং দ্রষ্টব্য :

১৬। সোলার এনার্জি ব্যবহারপূর্বক ভ্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের চিত্র অন্ধন করে বিভিন্ন অংশ চিহ্নিত কর।

উত্তর সংক্তেত ও অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোপ্তর ৪ নং দ্রন্টব্য।

১৭। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি লিখ।

ঠিচর সমকেত ও অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

১৮। মান্টিস্টেঞ্ক কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাতলো লিখ।

ঠিচর সমকেত । অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্লোত্তর ৭ নং দ্রষ্টব্য ।

১৯। একটি হিট এক্সচেঞ্জার ডিজাইন করতে কী কী ফ্যাক্টর বিবেচনা করা হয়?

ঠিচর সংক্রেত ট্র অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

২০। ইভাপোরেটিভ কুলার চিত্রসহ বর্ণনা কর।

উচর সমকেত 🗗 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

গ-বিভাগ (মান $: 8 \times c = 20$)

২১। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারী চিত্রের সাহায্যে বর্ণনা কর।

🕏 হর সমক্রেত 🚱 অনুশীলনী ৯ এর রচনামূলক প্রশ্লোত্তর ৬ নং দ্রষ্টব্য ।

২২। স্বয়াটার ইন্টারকুলারসহ প্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

ঠিঃর সমকেত 🖟 অনুশীলনী ২ এর রচনামূলক প্রশ্লোত্তর ৪ নং দ্রষ্টব্য :

২৩। সোলার হিট ব্যবহৃত অ্যাবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

🕏 इत সহকেত 🚱 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

২৪ । R-12 সিস্টেমকে R-134a সিস্টেমে কীভাবে রূপান্তর করা যায়, ধারাবাহিকভাবে শিখ ।

ঠিতর সংক্রেত 🖥 অনুশীলনী ৯ এর রচনামূলক প্রশ্লোত্তর ৪ নং দ্রষ্টব্য ।

২৫। একটি R-12 হিমায়ক ব্যবহৃত সিস্টেম প্রতি ঘণ্টায় 100 MJ তাপে গরম করার জন্য হিট পাম্প হিসেবে ব্যবহৃত হচ্ছে সাইকেলটি 15°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাম্পের এনখালপি 357kJ/kg, সম্পৃক্ত তরলের এনখালণি 225kJ/kg, সুপারহিটেড বাম্পের এনখালপি 377kJ/kg, হলে বের কর ঃ

(ক) হিমায়কের পরিমাণ (খ) কম্প্রেসরের ক্ষমতা, (গ) পিস্টন ডিসপ্লেসমেন্ট, যদি আয়তনিক দক্ষতা ৪5% হয়, (प) Co (হিট পাম্প)।

উরর সম্ফেত 🛭 অনুশীসনী ১ এর উদাহরণ ১৪ নং দুষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ষষ্ঠ ও অষ্টম পর্ব সমাপনী পরীক্ষা-২০০৬ টেকনোলজি ঃ রেফ্রিজারেশন আভে এয়ারকভিপনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং

বিষয় কোড : ৩২৬৫

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ৪ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **:** ১০ × ১ = ১০)

ইমায়ক রিক্রেইম বলতে কী বঝায়?

ঠিতর সমকেত 🗗 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রষ্টব্য ।

২। রিকোভারী ও রিক্লেইম এর মধ্যে দু'টি পার্থক্য লিখ।

ঠিতর সমকেত 🗗 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রুষ্টব্য :

৩। গ্লোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বুঝায়?

ঠিচর সংক্রেত 🔊 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রাষ্টব্য ।

8। হিমায়ক 134a এর রাসায়নিক সংকেত ও কুটনাঙ্ক লিখ।

ঠিচর সথকেত 🔊 অনুশীদনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য :

৫। হিমায়ক চক্রের উপর হিমায়কের ইভাপোরেটিং ও কন্ডেন্সিং প্রেসারের প্রভাব কী?

ঠিতর সংক্রেত 🚱 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোবর ১৩ নং দ্রাইব্য।

৬। রেট্রোফিট (Retrofit) বলতে কী বুঝায়?

ঠিচর সংক্রেত 🔊 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য ।

१। হিট পাস্পের প্রয়োগক্ষেত্রগুলো লিখ।

ঠিতর সংক্রেন্ড ও অনুশীলনী ১০ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৪ নং দুইব্য়

৮। হিমায়ক 1342 এর সঙ্গে ব্যবহৃত তেলের নাম লিখ।

উভর সমকেত 🔊 অনুশী**ল**নী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৬ নং দ্রষ্টব্য।

৯। লগ মিন টেস্পারেচার ডিফারেন্স (LMTD) কাকে বলে?

ঠিচর সমক্তেত 🚱 অনুশী**ল**নী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৩ নং দুষ্টব্য।

১০। ইভাপোরেটিভ কুলিং সিস্টেমের অসুবিধা কী কী?

ঠিছর সম্প্রেক 🚱 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

খ-বিভাগ (মান **ঃ** ১০ × ২ = ২০)

১১। সি.এফ.সি হিমায়ক কীভাবে পরিবেশের ক্ষতি করে?

উচর সংক্রেন্ত 🚱 অনুশীলনী ৭ এর সংক্রিপ্ত প্রশ্নোত্তর ৯ নং দুষ্টব্য ।

১২। ইভাপোরেটিভ কুশার চিত্রসহ বর্ণনা কর।

ঠিতর সম্প্রেক্ত 🔊 অনুশীলনী ১২ এর সংক্ষিত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

১৩। ক্যাসকেড সিস্টেমের বর্ণনা দাও।

ঠিতর সমকেত 🔊 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

১৪ । একটি আধুনিক হিমায়কের রাসায়নিক গুণাবলির উল্লেখ কর।

🕏 চর সংক্রেত 📳 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রস্লোন্তর ৮ নং দ্রষ্টব্য।

১৫। দিকুইড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিস্টেমের বর্ণনা দাও।

উচর সম্বেক্ত 🔊 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

১৬। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি লিখ।

ঠিতর সহকেত 🔊 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

১৭। কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।

উত্তর সহকেত 🚱 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

১৮। সোলার এনার্জি ব্যবহারপূর্বক ড্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের চিত্র অন্ধন করে বিভিন্ন অংশ চিহ্নিত কর।

ঠিতর সংক্রেত 🚱 অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রাষ্টব্য ।

১৯ ৷ একটি হিট এক্সচেঞ্জার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়:

(উচর সমকেত 🗟 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং এইব্য।

২০। মান্টিস্টেজ কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাগুলো লিখ।

😎 র সংক্রেত 🚱 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

.প-বিভাগ (মান ঃ ৪ × ৫ = ২০)

২১। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারী চিত্রের সাহায্যে বর্ণনা কর।

(উত্তর সহক্ষেত 🕏) অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

২২। ওয়াটার ইন্টারকুলারসহ থ্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যাবলি চিত্রসহ বর্ণনা কর।

ঠিতর সম্প্রেত 🚱 অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

২৩। সোলার হিট ব্যবহৃত অ্যাবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

😎র সম্প্রেড 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

28 । R-12 সিস্টেমকে R-134a সিস্টেমে কীভাবে রূপান্তর করা যায়, ধারাবাহিকভাবে বর্ণনা কর।

ঠিতর সম্বক্তে 🗗 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

২৫। একটি R-12 হিমায়ক ব্যবহৃত সিস্টেম প্রতি ঘণ্টায় 100 MJ তাপে গরম করার জন্য হিট পাস্প হিসেবে ব্যবহৃত হচ্ছে সাইকেলটি 15°C হতে 50°C তাপমাত্রার মধ্যে চলছে। সম্পৃক্ত বাস্পের এনখালপি 357kJ/kg, সম্পৃক্ত তরলের এনখালগি 225kJ/kg, সুপারহিটেড বাস্পের এনখালপি 377kJ/kg, হলে বের কর ঃ

(ক) হিমায়কের পরিমাণ, (খ) কম্প্রেসরের ক্ষমতা, (গ) পিস্টন ডিসপ্লেসমেন্ট, (আয়তনিক দক্ষতা 75%) (ঘ) CO (হিট পাম্প)।

🕏 ৪র সম্প্রেক্ত 🎖 অনুশীলনী ১ এর উদাহরণ ১.১৪ নং দ্রষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ান্মিং শিক্ষাক্রম পঞ্চম ও সপ্তম পর্ব সমাপনী পরীক্ষা-২০০৭ টেকনোলজিঃ রেফিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬৫

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল প্রস্লের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রস্লের উত্তর দাও :

ক-বিভাগ (মান : ১০ × ১ = ১০)

১। PH চার্টের তিনটি অঞ্চলের নাম পিখ।

🕏 ৪র সহক্রেন্ত 🙎 অনুশীলনী ১ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ৭ নং দ্রাইব্য।

২ ৷ ফ্রাশ চেমার কেন ব্যবহার করা হয়?

ঠিচর সংক্রেন্ড 🗿 অনুশীলনী ২ এর অতি সংক্লিপ্ত প্রশ্নোন্তর ৩ নং দুটব্য 🗵

৩। কম্পাউভ কম্প্রেসন বলতে কী বুঝায়?

🗦 ১৪র সম্প্রকত 😽 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য।

৪ ৷ ফ্র্যাট প্লেট কান্সেরর কী কী উপাদান নিয়ে গঠিত?

ঠিচর সহকেত 🚱 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

ে। ইউটেকটিক ফুইডের ব্যবহার লিখ।

উচর সহকেত ছু। অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দুইব্য :

৬। ইভাপোরেটিভ কুলিং এর চারটি ব্যবহার ক্ষেত্র উল্লেখ কর।

ভিতর সংক্রেন্ত 🚱 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

৭ ৷ হিট পাম্পের COP নির্ণয়েরী সূত্রটি লিখ ৷

(**উডর সম্মকত** ত্র অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্ডর ৫ নং দ্রষ্টব্য ।

৮। CO₂ এবং O₂ এর ভারসাম্যতা বলতে কী বুঝায়?

(ইয়র সদক্তেত ব্রু) অনুশীলনী ৭ এর অতি সংক্ষি**ও** প্রশ্নোন্তর ৭ নং দ্রাইব্য।

৯ । প্রাউড পয়েন্ট বলতে কী বুঝায়?

উচর সহকেত 🚰 অনুশীলনী ৮ এর অতি সংক্ষি**ণ্ড প্রশো**ন্তর ৭ নং দ্রাইব্য ।

১০ : রিক্রেইম কী?

উচন সমকেত ছ অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রুটব্য :

4-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। একটি মান্টিস্টেন্ড কম্প্রেশন হিমায়ন চক্র জন্ধন কর।

ভিতর সম্মকত 🕙 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য ।

১২। RE = 90 kJ/kg এবং WD = 30 kJ/kg হলে Heat of condenstation কড?

উচর সহকেত 🔊 অনুশীলনী ১ এর সংক্ষিত্ত প্রশ্লোন্ডর ৬ নং দ্রষ্টব্য ।

অ্যাডভাগত রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং-৩১

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

১৩। ইডাপোরেটরের চাপ কমঙ্গে RE, WD এবং COP এর উপর কী প্রভাব পড়ে?

্র্রিচর সম্প্রেক্ত 👂 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য।

১৪। মান্টিস্টেজ ও ক্যাসকেড সিস্টেমের চারটি পার্থক্য শিখ।

্রিষ্টর সংক্রেত 💅 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।

১৫। লিকুইড সোলার কালেক্টর কীভাবে কাজ করে?

ত্তিত্বর সংক্রেত 🚱 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দুটব্য।

১৬ । চিকিৎসা ক্ষেত্রে হিমায়কের চারটি ব্যবহার লিখ <u>।</u>

্<mark>টিচর সংক্রেত ছ</mark> অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১৩ নং দ্রষ্টব্য।

১৭। গ্রীনহাউস ইফেক্ট কমানোর উপায় বর্ণনা কর।

ঠিচর সম্প্রকত 👂 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

১৮। হিমায়ক 69s এর পাঁচটি ভাল বৈশিষ্ট্য বর্ণনা কর।

ইয়র সম্বেক্ত 👂 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

১৯। পুনঃলাভ এবং পুনঃচক্রায়নের ব্যাখ্যা কর।

্রিষ্টর সংক্রেত s) অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্লোত্তর ৫ নং দ্রাষ্টব্য ।

২০। দ্রুত ব্যালেন্দিং পদ্ধতির ধাপগুলো লিখ।

উষ্টর সংক্রেড ৪ সিলেবাস বহির্ভৃত।

গ-বিভাগ (মান ঃ 8 × ৫ == ২০)

২১। ওয়াটার ইন্টারকুলার, লিকুইড সাব-কুলার এবং ফ্লাস ইন্টারকুলার যুক্ত টু স্টেজ কম্প্রেশন পদ্ধতির প্রবাহচিত্র এবং P-ডায়াঘাম অন্ধন কর।

😎 उन्हों अपूर्णीयनी ২ এর রচনামূলক প্রশ্নোত্তর ৩ নং দুটব্য ।

২২। সৌরশক্তি কাঞ্জে লাগিয়ে কীভাবে শীতাতপ নিয়ন্ত্রণ করা যায়, বর্ণনা কর।

তিষ্ক সম্কেত 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

২৩। একটি R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর।

ঠিচর সহকেত s) অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

২৪। বায়ু সরবরাহ ব্যবস্থার ব্যালানিং করার দু'টি পদ্ধতি বর্ণনা কর।

উচন সংক্রেত 🛭 সিলেবাস বহির্ভৃত।

২৫। হিট এক্সচেঞ্জার ডিজাইন করতে বিবেচ্য বিষয়গুলো কর্ণনা কর।

🕏 চন সম্প্রকত 🎳 অনুশীলনী ১১ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রন্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ষষ্ঠ ও অষ্টম পর্ব সমাপনী পরীক্ষা-২০০৭ টেকনোসজিঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬৫

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ৪ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ১০ × ১ = ১০)

১। হিমায়ন চক্রে ফ্লাশ চেমার ব্যবহারের কারণ কী?

(উভন্ন সমক্রেত 🗗 অনুশীপনী ২ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য।

২ ৷ ফ্লাশ গ্যাস বলতে কী বুঝায়?

উচর সংক্রেড জি অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য।

৩। আদর্শ রেফ্রিস্কারেন্টের ভৌত গুণাবলি কী?

ভিতর সংক্রেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

8। রিকোভারী ও রিক্রেইম এর মাঝে দু'টি পার্থক্য লিখ।

🕏 হর সমকেত 🔊 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্লোতর ১১ নং দ্রষ্টব্য।

৫ ৷ হিট অব্ কভেলেশন বলতে কী বুঝায়?

উচন সমকেত ন্ত্র অনুশীলনী ১ এর অতি সংক্ষিত্ত প্রল্লোন্তর ১২ নং দ্রষ্টব্য।

ছিমায়ক 134a এর রাসায়নিক সংকেত ও ক্ট্টনাল্ক লিখ।

ঠিছর সংক্রেত ও অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ;

৭। ফ্লাল চেম্বার ব্যবহারের কারণ কী?

ঠিতর সংক্রেন্ত 🖟 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রষ্টব্য :

৮ : CFC বলতে কী বুঝায়?

ঠিতর সহকেত 🕙 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্লোম্বর ১ নং দ্রউব্য ।

৯। গ্রোবাল ওয়ার্মিং পটেনলিয়াল বলতে কী বৃঝায়?

ঠিতর সম্প্রকত 🚱 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোতর ৩ নং দুটব্য।

১০। একটি যান্ত্রিক হিমায়ন চক্রে যে পার্মোডিনামিক প্রক্রিয়া বিদ্যমান, তা লিখ।

উচর সংক্রেন্ড 👸 অনুশী**দনী ১ এর অতি সংক্রিন্ড প্রশ্নোন্তর ১৪** নং দ্র**ট**ব্য।

ধ-বিভাগ (মান : ১০ × ২ = ২০)

১১। ইভাপোরেটিভ কুলিং সিস্টেমের বিভিন্ন অংশের নাম ও কাজ লিখ।

(উচর সংক্রেত 📳 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রুষ্টব্য ।

১২। ক্যাসকেড সিস্টেমের চিত্র অঙ্কন করে বিভিন্ন অংশ চিহ্নিত কর।

ঠিচর সংক্রেত 🛭 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।

১৩। **পিকুই**ড ইন্টারকুলারসহ টু স্টেজ কম্প্রেশন সিন্টেমের বর্ণনা দাও।

উচর সমকেত 🚱 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোতর ৪ নং দ্রষ্টব্য :

১৪। সি.এফ.সি হিমায়ক কীভাবে পরিবেশের ফতি করে?

ঠিচর সম্প্রকৃত 🛭 অনুশীলনী ৭ এর সংক্ষিত্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য ।

্ ১৫। কুইক ফ্রিজিং এবং শার্প ফ্রিজিং এর চারটি পার্থক্য দিখ।

তিচর সমকেত 🚱 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোতর ৯ নং দ্রষ্টব্য।

১৬। বাংলাদেশ সোলার হিটের প্রয়োগ ক্ষেত্রগুলো লিখ।

উচর সমকেত 🚱 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

১৭। মান্টিস্টেজ কম্প্রেশন সিস্টেমের সূরিধা ও অসুবিধান্তলো লিখ।

উচর সমকেত 🚱 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

১৮। একটি হিট এক্সচেঞ্জার ডিজাইন করতে কী কী বিষয় (Factor) বিবেচনা করা হয়?

উচর সম্ফেড 🛭 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য :

১৯। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেম্পের গুণাবলি উল্লেখ কর।

(ইচর করেন্ড 🔊 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

২০। হিট পাম্পের প্রয়োগ ক্ষেত্রগুলো লিখ।

উষ্টর সমক্রেত 🛭 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

গ-বিভাগ (মান ঃ ৪ × ৫ = ২০)

২১ । R-12 সিস্টেমকে R-134a সিস্টেমে কীভাবে রূপান্তর করা যায়, ধারাবাহিকভাবে লিখ।

উত্তর সমকেত 🛭 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

২২। শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সৌরশক্তিকে কীভাবে প্রয়োগ করা যায়, এর সচিত্র বর্ণনা দাও।

উচন সমকেত 🖟) অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৫ নং দ্রষ্টব্য :

২৩। ওয়াটার ইন্টারকুলারসহ প্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহকারে বর্ণনা কর।

উচর সংক্রেত 🛭 অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য :

২৪। কম্প্রেসর ওয়েলের গুণাবলি বর্ণনা কর।

উচর সম্প্রকত 🔊 অনুশীলনী ৮ এর রচনামূলক প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

২৫। একটি R-12 হিমায়ন যদ্রের ক্ষমতা 25 টন, যায় ইভাপোরেটিং তাপমাত্রা (-10)° সেঃ এবং কন্তেসিং তাপমাত্রা 35° সেঃ হিমায়ক কম্প্রেসরে প্রবেশের পূর্বে 5° সেঃ তাপমাত্রায় উত্তপ্ত হয়। সম্পৃক্ত তরলের এনখালপি 230kJ/kg, সম্পৃক্ত বাস্পে এনখালপি 330kJ/kg; সুপারহিটেড বাস্পের এনখালপি 360kJ/kg; হলে নির্ণয় কর ঃ

(ক) হিমায়কের পরিমাণ, (খ) কম্প্রেসরের ক্ষমতা, (গ) COP।

উচর সংক্রেত 🛭 অনুশীলনী ১ এর উদাহরণ ১০ নং দুষ্টব্য ।

ডিপ্রোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম পঞ্চম ও সন্তম পর্ব সমাপনী পরীক্ষা-২০০৮ টেকনোপজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং বিষয় কোড ঃ ৩২৬৫

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ৪ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

উচর সম্প্রেক্ত 🕝 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য :

২ । পরিব্যাপ্ত সৌরতাপ বিকিরণের সংজ্ঞা লেখ।

🕏 হর সদলেত 📳 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

৩। মান্টি ইন্ডাপোরেটর ব্যবহারের উদ্মহরণ দাও।

্ঠিতর সংক্রেন্স 🕙 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

8। ফ্রাশ চেম্বারের কাজ কী?

উচন সদকেত 🚱 অনুশীপনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

ে। কম্পাউন্ড কম্প্রেশন বলতে কী বুঝায়?

উচর সদক্রেত 📴 অনুশীলনী ২ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

৬। ইভাপোরেটিভ কুলিং বলতে কী বুঝায়?

(উচর সম্ফেত 😜 অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

৭। উদাহরণসহ হিট এক্সচেঞ্চারের সংজ্ঞা দাও।

উচর সম্প্রেক্ত 🚱 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

৮। হিট পাম্পের COP নির্ণয়ের সূত্রটি লেখ।

উচর সহকেত 🖥 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।

৯। রেট্রোফিট বলতে কী বুঝায়?

🕏 ভর সহকেত 🔗 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

১০ ৷ ফ্রক পয়েন্ট কী?

ভিতর সম্মেক্ত 👸 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্লোতর ৫ নং দ্রষ্টব্য :

খ-বিভাগ (মান ৪ ১০ × ২ = ২০)

১১। কম্প্রেসর অয়েল নির্বাচনের বিবেচ্য বিষয়গুলো লিখ।

উভর সম্ক্রেত 🔊 অনুশীলনী ৮ এর সংক্ষি**ন্ত প্রশ্নোত্তর ৬ নং দ্র**ষ্টব্য :

১২। হ্যালোকার্বন রেফ্রিজারেন্টের নম্বর প্রদানের নিয়ম লিখ।

🕏 হর সদক্তেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য :

১৩। বিভিন্ন প্রকার সৌরতাপ সংগ্রাহকের নাম লিখ।

উচর সংক্রেত 🕝 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য ।

১৪। ক্যাসকেড সিস্টেম সচিত্র বর্ণনা কর।

উচর সংক্রেত 👨 অনুশীলনী ৩ এর রচনামূলক প্রশ্লোত্তর ৭ নং দ্রষ্টব্য।

১৫। মান্টিস্টেজ কম্প্রেসনে ওয়াটার ইন্টারকুলার কেন ব্যবহার করা হয়?

ইচন্ন সংক্রেড ছ অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য।

১৬। ইভাপোরেটিভ কুলিং এর অসুবিধাগুলো লিখ।

উচর সংক্রেত 😜 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

১৭। ক্রস-ফ্রো হিট এক্সচেঞ্জারের চিত্রসহ প্রকারভেদ লিখ।

উচর সংক্রেত 😜 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।

১৮। শিল্পক্ষেত্রে হিট পাম্পের ব্যবহার লিখ।

উচর সংক্রেত ট অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য।

১৯। বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ লিখ_।

উচর সংক্রেন্ত 🚱 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

২০। আধুনিক হিমায়কের চারটি বৈশিষ্ট্য লিখ।

ঠিচর সহকেত 🚱 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য ।

গ-বিভাগ (মান **ঃ** ৪ × ৫ = ২০)

২১। R ~ 12 ব্যবহৃত 1 টন ক্ষমতা সম্পন্ন একটি হিমায়ন যন্ত্র 0°C ইভাপোরেটিং তাপমাত্রা এবং 50°C কন্তেসিং তাপমাত্রায় কাঞ্জ করছে। নিচের তথ্যের ভিত্তিতে সরল বাষ্প সংকোচন হিমায়ন হিসেবে হিমায়ন যন্ত্রের COP এবং কম্প্রেসরের ক্ষমতা নির্ণয় কর। যদি হিমায়ন যন্ত্রটিকে 5°C ইভাপোরেটিং তাপমাত্রা এবং 60°C কন্ডেসিং তাপমাত্রায় হিট পাম্প হিসেবে ব্যবহার করা হয়, তবে নিচের তথ্যানুযায়ী ওটির COP এবং কম্প্রেসরের ক্ষমতা নির্ণয় কর। তথ্যাদি ঃ

হিমায়দ বয়ের ক্ষেত্রে

হিট পাম্পের ক্ষেত্রে .

 $h_1 = 186 \text{ kJ/kg}.$

 $h_1 = 185 \text{ kJ/kg}.$

 $h_2 = 215 kJ/kg.$

 $h_2 = 225 kJ/kg$.

 $h_3 = 215kJ/kg$.

 $h_2 \approx 100 \text{kJ/kg}.$

🕏 হর সক্ষকত 👸 অনুশীলনী ১ এর উদাহরণ ১১ নং দুষ্টব্য।

২২ ৷ R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তরের পদ্ধতি বর্ণনা কর ${}_{\parallel}$

ইতর সম্কেত ছ অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

২৩। ইভাপোরেটিভ কুলার নির্বাচন এবং ডিজাইনে বিবেচ্য বিষয়গুলো বর্ণনা কর।

তিচন্ন সম্ফ্রেক্ত 🔊 অনুশীলনী ১২ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

২৪। সৌর শক্তির মাধ্যমে চালিত বাষ্প সংকোচন পদ্ধতি বর্ণনা কর।

🔁 🗗 সম্প্রেক্ত 👂 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

২৫। ওয়াটর ইন্টারকুলার, লিকুইড সাব-কুলার ফ্লাশ ইন্টারকুলারযুক্ত টু-স্টেজ কম্প্রেশন পদ্ধতির প্রবাহ চিত্র এবং পি.এইচ ডায়াগ্রাম অন্ধন কর।

উচর সম্পক্তে 🔊 অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম পঞ্চম ও সগুম পর্ব সমাপনী পরীক্ষা-২০০৯ টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬৫

সময় ৪ ৩ ঘণ্টা

পূৰ্ণমান ৪ ৫০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

১ ৷ মাল্টিস্টেজ কম্প্রেশন বলতে কী বুঝায়?

ঠিছর সম্প্রেক্ত ব্র অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য :

২। ইন্টারকুলারের চাপ নির্ণয়ের সূত্রটি লিখ।

(উত্তর সম্ফেক্ত 🗗) অনুশীলনী 😑 এর অতি সংক্ষিপ্ত প্রশ্লোন্তর 😑 নং দুটব্য ।

৩। ফ্লাশ চেম্বারের কাজ কী?

ঠিছর সংক্রেড ছ) অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

৪। পরিব্যাপ্ত সৌরতাপ বিকিরণের চিত্র অঙ্কন কর।

🗷 ইবর সম্প্রেক 😅 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রম্ভব্য ।

৫। দুটি সোলার ক্যালেন্তরের নাম লিখ।

ঠিতর সংক্রেত 🛭 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

৬। মান্টি ইভাপোরেটর ব্যবহার ক্ষেত্রের উদাহরণ দাও।

ঠিছর সংক্রেড 🚱 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্লোত্তর ৪ নং দ্রস্টব্য ।

৭। সান্দ্রতা (Viscosity) এর উপর তাপমাত্রার প্রভাব শিখ।

্ঠিত্তর সমকেন্ড ভ অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দুইব্য।

৮। 'রেট্রোফিট' বলতে কী বুঝায়?

ভিতর সংক্রেত 🛭 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোত্তর ৫ নং দ্রষ্টব্য ।

৯। ইউটেকটিক ফুইডের ব্যবহার শিখ।

ঠিছর সম্প্রেক্ত 😝 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রেষ্টব্য ।

১০। দু'টি হিট এক্সচেঞ্চারের নাম লিখ।

ঠিতর সম্ফেন্ড 👨 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দুটব্য ।

च-বিভাগ (মান ঃ ১০ × ২ ≃ ২০)

১১। সিঙ্গেল-স্টেজ কম্প্রেশন অপেক্ষা মাল্টিস্টেজ কম্প্রেশন পদ্ধতির সূবিধা লিখ।

ঠঁয়র সহকেত 👂 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দুষ্টব্য।

১২। সোলার এনার্জি চালিত একটি রেফ্রিজারেশন পদ্ধতির প্রবাহচিত্র অঙ্কন কর।

উত্তর সংক্রেত 🕝 অনুশীলনী ৫ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

```
১৩। কম্প্রেসর অয়েল নির্বাচনের বিবেচ্য বিষয়গুলো লিখ।
     (উছর সম্ফেত 🗗 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
১৪ : R-12 এবং R-717 হিমায়কের বাণিজ্যিক নম্বরের তাৎপর্য লিখ :
      ঠিছর সম্প্রেক্ত 🔊 অনুশীলনী ৬ এর রচনামূলক প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।
১৫। Recovery, Recycling এবং Reclaim কী, বুঝিয়ে লিখ।
      উচর সহকেত 🚱 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ ও ২ ও ৩ নং দ্রষ্টব্য ।
১৬। আধুনিক হিমায়কের চারটি বৈশিষ্ট্য লিখ।
      🕇 ভর সদকেত 😨 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দুষ্টব্য :
১৭। Geothermal হিট পাম্প ও Air source হিট পাম্পের পার্থক্য দিখ।
      ষ্টিভর সঞ্চকত 🚱 অনুশীপনী ১০ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দুষ্টব্য ।
১৮। হিট এক্সচেঞ্চারের ব্যবহার লিখ।
      🕏 ছর সম্প্রেক্ত 😴 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ১১ নং দুষ্টব্য ।
১৯। ইভাপোরেটিভ কুলিং এর ব্যবহার লিখ।
      (ঠঁছর সম্প্রকৃত 💅 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।
২০। একটি মান্টিস্টেজ সিস্টেমের প্রবাহচিত্র অঙ্কন করে বিভিন্ন অংশ চিহ্নিত কর।
      🕏 ভরু সম্প্রকত 💅 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দুউব্য ।
                                              গ-বিভাগ (মান 8 \times c = ২০)
২১। ওয়াটার ইন্টারকুলার ও লিকুইড সাব-কুলারযুক্ত একটি টু স্টেজ কম্প্রেশন পদ্ধতি প্রকাহচিত্র ও p-h ডায়াগ্রামসহ বর্ণনা কর।
      (উষ্তর সম্প্রেক্ত 🛭 অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ২ নং দুষ্টব্য 🛭
২২ : একটি R-12 সিস্টেমকে R-1342 সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর :
      (উচর সহকেত 🛭 ) অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৪ নং দুষ্টব্য ।
২৩। হিট এক্সচেঞ্চারের চিত্র অন্ধন করে কার্যপ্রণালি বর্ণনা কর।
      (উষ্টর সংক্রেড 🗗) অনুশীলনী ১১ এর রচনামূলক প্রশ্নোত্তর ১ নং দুষ্টব্য ।
২৪। বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ বর্ণনা কর।
      (উত্তর সমকেত 🚱 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।
২৫। 250 kw ক্ষমতাসম্পন্ন অ্যামোনিয়া চালিত একটি হিমায়ন যন্ত্রের ইন্ডাপোরেটরের তাপমাত্রা ~২৫° সেন্টিশ্রেড এবং কন্ডেন্সার
      তাপমাত্রা ৩৫° সেন্টিগ্রেড। হিমায়ন চক্রটি ইন্টারকুলারযুক্ত। বিতীয় ধাপে কম্প্রেশনকালে ফ্লাশ গ্যাসকে সংকৃচিত করা হয়।
     হিমায়ন চক্রটি আঁক এবং নিচের তথ্যের ভিত্তিতে হিমায়ন যন্ত্রটি পরিচালনার জন্য কত ক্ষমতার প্রয়োজন হবে, নির্ণয় কর।
     তথ্যাদি ঃ নিচু ধাপের কম্প্রেসরের সম্পৃক্ত বাস্পের এনধালপি 📁 ১৪৩০ kJ/kg
     নিচু ধাপের কম্প্রেশন শেষে এনখালপি
                                                                 = ১৫৭৩ kJ/kg
      ইন্টারকুলারের নির্গত সম্প্রন্ত বাম্পের এনখালপি
                                                                 = $850 kJ/kg
      উঁচু ধাপের কম্প্রেশন শেষে এনখালপি
                                                                 = ১৬২0 kJ/kg
      উঁচু ধাপের সম্পুক্ত তরলের এনথালপি
```

= ৩৩৬ kJ/kg

= ২০২ kJ/kg

নিচু ধাপের সম্পুক্ত তরলের এনখালপি

🕭 হর সমক্রেত 📳 অনুশীলনী ২ এর উপাহরণ ২.২ নং এর অনুরূপ।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ২য়, ৪র্থ, ৬ষ্ঠ ও ৮ম পর্ব সমাপনী পরীক্ষা-২০০৯ টেকনোলজিঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশিনং

বিষয় ঃ এডভাসত রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬৫

সময় ৪ ৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও ব-বিভাগের সকল এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

ফ্রাশ চেম্বার এর কাজ উল্লেখ কর।

তিত্রর সম্প্রেক্ত 😝 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য ।

কম্পাউন্ড কম্প্রেসন সিস্টেম বলতে কী বুঝায়?

তিষ্কর সম্প্রেক্ত 🖁 অনুশীলনী ২ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য।

৩। সোলার হীট কালেক্টরের কাজ উল্লেখ কর।

তিরত্ব সম্প্রেক্ত । অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য।

৪ ৷ ইভাপোরেটিভ কুলিং সিস্টেম বলতে কী বুঝায়?

তিষ্ক সংক্রেত है। অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য।

৫। পৃথিবীর প্রথম হিমায়ন যন্ত্রের নাম কী?

তিষ্ক সম্ফ্রেড 👂 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৭ নং দ্রষ্টব্য ।

৬। কম্প্রেসরে ওয়েল কেন ব্যবহৃত হয়?

ঠিচর সম্বক্তে ব্র অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দুষ্টব্য।

৭। হিমায়কপূর্ণ চক্রায়ন বলতে কী বুঝায়?

ত্রিত্রর সমক্রেত । অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

৮। C.F.C হিমায়ক বলতে কী বুঝায়?

ঠিছর সংক্রেত है। অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য।

ইটি পাম্পের প্রয়োগ ক্ষেত্রগুলো লেখ।

উচর সংক্রেত है। অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোতর ৪ নং দুষ্টব্য।

১০। হিমায়ক 134a এর রাসায়নিক নাম ও সংকেত লেখ।

🕏 इत সহকেত 🎒 অনুশীননী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোতর ৪ নং দ্রষ্টব্য :

ৰ-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। ভেপার কম্প্রেশন সিস্টেমের ভায়াগ্রাম অন্তনপূর্বক বিভিন্ন অংশ চিহ্নিত কর।

উচর সংক্রেন্ড প্র অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।

১২। নিমু তাপমাত্রার হিমায়নের ব্যবহার ক্ষেত্রগুলো উল্লেখ কর।

ঠিচর সমকেত है। অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।

অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশৃনিং–৩২

১৩। দ্রাই আইস তৈরির কৌশল বর্ণনা কর।

🕏 ৪র সংক্রেত 👸 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রষ্টব্য ।

১৪। একটি আদর্শ হিমায়কের বৈশিষ্ট্যগুলো বর্ণনা কর।

ঠিচর সমকেত ছ) অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রষ্টব্য ।

১৫। কম্প্রেসর ওয়েলের ক্লাউড পয়েন্ট ও ফ্লক পয়েন্ট বলতে কী বুঝায়?

ঠিছর সমকেত 🖁 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ ও ৭ নং দ্রষ্টব্য।

১৬। একটি হিট এক্সচেঞ্চার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়?

ঠিছর সমকেত ট্র অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দু**ট**ব্য।

১৭। তিনটি আধুনিক হিমায়কের গুণাবলি **লেখ**।

ঠিচর সম্প্রেত 🔊 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১১ নং দুষ্টব্য :

১৮। ইভাপোরেটিভ কুলিং সিস্টেমের প্রয়োগ ক্ষেত্রগুলো লেব।

ভিত্তর সংক্রেত ভ অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুষ্টব্য।

১৯। কম্পাউন্ড কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাগুলো লেখ।

(ইডর সঘকেত ह) অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

২০। ইলেকট্রোপ্লোটিং কীসের তৈরি?

(ঠিছর সম্ক্রেড 🕏) অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।

গ-বিভাগ (মান ঃ B × ¢ = ২০)

২১। সৌর শক্তির সাহায্যে চালিত ভ্যাপার অ্যাবজর্পশন পদ্ধতির হিমায়ন চক্রের কার্যপ্রণালি চিত্র সহকারে বর্ণনা কর।

🕏 ৪র সমকেত 🖁 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

২২। একটি হিমায়ন চক্রের হিমায়ক রিকোভারি চিত্র সহকারে বর্ণনা কর।

(ঠিষ্টর সম্প্রেক্ত 🕏) অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

২৩। একটি টু-স্টেজ বিশিষ্ট ক্যাসকেড সিস্টেম এর চিত্র সহকারে কার্যপ্রণালি লেখ।

্ঠিছর সংক্রেত 🕝 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৯ নং দ্রষ্টব্য।

২৪। একটি ইভাপোরেটিভ কুলিং সিস্টেমের চিত্রসহ কার্যপ্রণালি বর্ণনা কর।

🕉 হর সমকেত 🖁 অনুশীলনী ১২ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।

২৫। অ্যামোনিয়া ব্যবহৃত একটি হিমায়ন চক্রে ঘনীভবন তাপমাত্রা 30°C এবং এক্সপানশন ডিভাইসে সেচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। এ হিমায়ক (-8)°C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। সম্পৃক্ত তরলের এনথালপি 1464 kJ/kg, সম্পৃক্ত তরলের এনথালপি 325kJ/kg কম্প্রেসর দিয়ে কম্প্রেসত বাষ্পের এনথালপি 1635 kJ/kg হলে বের কর ঃ (ক) হিমায়ক প্রবাহের পরিমাণ; (খ) COP; (গ) কম্প্রেসর এর ক্ষমতা ও ঘনীভবন ক্ষমতা।

্ঠিতর সংক্রেত 🕝 অনুশীলনী ১ এর উদাহরণ ১.১৩ নং দ্রষ্টব্য।

১৩। ড্রাই আইস তৈরির কৌশল বর্ণনা কর।

্রিষ্টর সম্প্রেক্ত 👸 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রষ্টব্য ।

১৪। একটি আদর্শ হিমায়কের বৈশিষ্ট্যগুলো বর্ণনা কর।

🕏 হর সহকেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য।

১৫। কম্প্রেসর ওয়েলের ক্লাউড পয়েন্ট ও ফুক পয়েন্ট বলতে কী বুঝায়?

ঠিচর সহকেত 🗳 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ ও ৭ নং দ্রষ্টব্য।

১৬। একটি হিট এক্সচেঞ্চার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়?

🕏 হর সহকেত 🎳 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোক্তর ৫ নং দুইবা।

১৭। তিনটি আধুনিক হিমায়কের গুণাবলি লেখ।

🐉 র সহকেত 😝 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১১ নং দ্রষ্টব্য।

১৮ । ইভাপোরেটিঙ কুলিং সিস্টেমের প্রয়োগ ক্ষেত্রগুলো **লেখ**।

ঠিচর সংক্ষেত 🕝 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্লোন্তর ৪ নং দ্রষ্টব্য।

১৯। কম্পাউন্ড কম্প্রেশন সিস্টেমের সুবিধা ও অসুবিধাগুলো লেখ।

্রিষ্ঠর সম্ক্রেড 👸 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

২০। ইলেকট্রোপ্রোটিং কীসের তৈরি?

ঠিচর সহক্রেত 🛭 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।

গ-বিভাগ (মান ঃ 8 × ¢ = ২০)

২১। সৌর শক্তির সাহায্যে চালিত ভ্যাপার অ্যাবজর্পশন পদ্ধতির হিমায়ন চত্তেন্র কার্যপ্রণালি চিত্র সহকারে বর্ণনা কর।

🕏 চর সংক্রেত 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্লোন্তর ৬ নং দ্রষ্টব্য।

২২। একটি হিমায়ন চক্রের হিমায়ক রিকোভারি চিত্র সহকারে বর্ণনা কর।

ঠিচর সহকেত 🖁 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।

২৩। একটি টু-স্টেজ বিশিষ্ট ক্যাসকেড সিস্টেম এর চিত্র সহকারে কার্যপ্রণালি লেখ।

ঠিচর সম্প্রকত 🔊 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৯ নং দ্রষ্টব্য।

২৪। একটি ইভাপোরেটিভ কুলিং সিস্টেমের চিত্রসহ কার্যপ্রণালি বর্ণনা কর।

ভিতর সম্প্রকত ভ) অনুশীলনী ১২ এর রচনামূলক প্রশ্নোতর ৭ নং দুষ্টব্য।

২৫। অ্যামোনিয়া ব্যবহৃত একটি হিমায়ন চক্রে ঘনীভবন তাপমাত্রা 30°C এবং এক্সপানশন ডিভাইসে সেচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। এ হিমায়ক (–8)°C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। সম্পৃক্ত তরলের এনখালপি 1464 kJ/kg, সম্পৃক্ত তরলের এনখালপি 325kJ/kg কম্প্রেসর দিয়ে কম্প্রেসত বাম্পের এনখালপি 1635 kJ/kg হলে বের কর ঃ (ক) হিমায়ক প্রবাহের পরিমাণ; (খ) COP; (গ) কম্প্রেসর এর ক্ষমতা ও ঘনীভবন ক্ষমতা।

্ঠিচর সম্কেত 🚱 অনুশীলনী ১ এর উদাহরণ ১.১৩ নং দুষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১০ টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশিনং (২০০৫ প্রবিধান)

বিষয় ঃ এডভাঙ্গভ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬০

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও খ-বিভাগের সকল এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান ঃ ১০ × ১ = ১০)

১। সি.এফ.সি ফ্রি হিমায়ক কী?

্টিরর সমকেত এ অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

২। ইভাপোরেটিভ কুলিং বলতে কী বুঝায়?

উচর সমকেত ?) অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রাষ্টব্য।

৩। হিট পাম্পের COP নির্ণয়ের সূত্রটি লেখ।

ঠিতর সম্ফেত ह অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রাষ্টব্য।

৪। ফ্র্যাট প্লেট কালেম্বর কী কী উপাদান দিয়ে গঠিত?

উত্তর সমকেত ঃ অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

ে। ক্লাউড পয়েন্ট বলতে কী বুঝায়?

ঠিছর সংক্রেত । অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রম্ভব্য।

৬ ৷ রিক্রেইম কী?

উত্তর সমকেত ল অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

৭। গ্লোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বুঝায়?

উত্তর সহক্রেত ह अনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

৮ - LMTD বলতে কী বুঝায়?

তিভর সংক্রেত ট অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১৩ নং দ্রষ্টব্য।

৯। আর্দশ রেফ্রিক্সারেন্ট এর ভৌত গুণাবলি কী?

ঠিচর সমকেত 🗷 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

১০। ড্ৰাই আইস কাকে বলে**?**

্ঠিতর সংক্রেত ছ) অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রাষ্টব্য।

ৰ-বিভাগ (মান **ঃ** ১০ × ২ = ২০)

১১। ক্যাসকেড সিস্টেমের সচিত্র বর্ণনা দাও।

ঠিচর সমকেত ह অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

১২। আধুনিক হিমায়কের চারটি বৈশিষ্ট্য **লেখ**।

তিত্তর সমকেত । অনুশীলনী ৬ এর সংক্বিন্ত প্রশ্নোতর ১১ নং দ্রন্তব্য ।

১৩। RE = 90 kJ/kg এক WD = 30 kJ/kg হলে Heat of Condensation কত?

উচর সংক্ষেত 🛭 অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোস্তর ৬ নং দ্রষ্টব্য ।

১৪। হিমায়ক 69s এর পাঁচটি বৈশিষ্ট্য লেখ।

তিহর সম্বক্তেত অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

১৫। পুর্নঃলাভ ও পুনঃচক্রায়নের ব্যাখ্যা দাও।

উচর সহকেত 🚱 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য।

১৬। মান্টিস্টেজ ও ক্যাসকেড সিস্টেমের চারটি পার্থক্য লেখ।

ত্তিচর সহকেত 🕏 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

১৭। রেফ্রিজারেশন সিস্টেমে ব্যবহৃত তেলের গুণাবলি লেখ।

উচর সম্প্রেক্ত 😝 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

১৮। কৃত্রিম উপায়ে ভূষার তৈরির পদ্ধতি বর্ণনা কর।

উচর সম্বেক্ত 😝 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

১৯। কুইক ফ্রিজিং এবং শার্প ফ্রিজিং এর মাঝে ৪টি পার্থক্য লেখ।

উচর সংক্রেত 🔊 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য ।

২০। একটি হিট Exchanger ডিজাইন করতে কী কী ফ্যাক্টর বিবেচনা করা হয়?

উচন সংক্রেত 🛭 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

গ-বিভাগ (মান ঃ ৪ × ৫ = ২০)

২১। ওয়াটার ইন্টারকুলার, লিকুইড সাব-কুলার ফ্লাশ ইন্টারকুলারযুক্ত টু-স্টেজ কম্প্রেশন পদ্ধতির প্রবাহ চিত্র এবং পি-এইচ ডায়াগ্রাম অন্ধন কর।

উচর সংক্রেত ন অনুশীলনী ২ এর রচনামূলক প্রশ্লোত্তর ৩ নং দ্রষ্টব্য।

- ২২। একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইভাপোরেটিং তাপমাত্রা 5°C এবং কভেঙ্গিং তাপমাত্রা 35° সে.। হিমায়ক কম্প্রেসরের প্রবেশের পূর্বে 5°C তাপমাত্রায় উত্তপ্ত হয়। সম্পৃক্ত তরলের এনধালপি 230kJ/kg, সম্পৃক্ত বাস্পের এনধালপি 360 kJ/kg হলে নির্ণয় কর ঃ
 - (ক) হিমায়কের পরিমাণ, (খ) কম্প্রেসরের ক্ষমতা, (গ) COP

উচর সম্প্রেক্ত 👨 অনুশীলনী ১ এর উদাহরণ ১০ নং দুষ্টব্য ।

২৩। ওয়াটার ইন্টারকুলারস থ্রী-স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর_।

তিভন্ন সংক্রেত 🚱 অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টব্য।

২৪। একটি ইতাপোরেটিভ কুলার এর গঠন এবং কার্যপদ্ধতি বর্ণনা কর।

্ঠিছর সংক্রেড
অনুশীলনী ১২ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।

২৫। সোলার হিট ব্যবহৃত আবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

তিষ্ক সংক্রেড 🔊 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোগুর ৬ নং দুষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬ষ্ঠ পর্ব পরিপুরক পরীক্ষা-২০১১ টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশিনং

বিষয় ৪ এডভাঙ্গভ রেফ্রিজারেশন অ্যান্ত এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬০

সময় ৪৩ ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও ব-বিভাগের সকল এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান 8 ১০ × ১ = ১০)

১। PH চাটের অঞ্চল কয়টি ও কী কী?

🕉 হর সংক্রেত 🛭 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রুষ্টব্য।

২। ফ্লাল চেম্বার কী?

্ঠিছর সম্বক্তে 🖁 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রন্টব্য।

া ক্রিটিক্যাল প্রেসার কাকে বলে?

ঠিচর সম্বক্তে । অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য।

8 ৷ রিক্রেইম কী?

ঠিচর সমকেত 🔊 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রুটব্য।

৫। COP নির্ণয়ের সূত্রটি লেখ।

ঠিত্তর সংক্রেক্ত 🕝 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

৬। হিমায়ক 134a এর রাসায়নিক সংকেত লেখ।

উত্তর সম্বক্তে দ্র অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য।

৭। গ্লোবাল ওয়ার্মিং পটেনশিয়াল কী?

ঠিচর সমকেত 👂 অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।

৮। রিট্রোফিট (Retrofit) বলতে কী বোঝায়?

্ঠিতর সমকেত 🖅 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৫ নং দ্রষ্টব্য।

৯। ক্যাসকেড সিস্টেমের সংজ্ঞা দাও।

ঠিচর সমকেত 🗗 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

১০। ইন্টারকুলারের কাজ কী?

উচর সংক্রেড 🛭 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

ৰ-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। একটি মান্টিস্টেজ কম্প্রেশন হিমায়ন চক্র অঙ্কন কর।

😎র সমকেত 🛭 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

১২। কম্প্রেসর ওয়েল নির্বাচনের বিবেচ্য বিষয়গুলো লেখ।

ঠিচর সম্ফেত 👂 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য।

১৩। দু-স্টেজ ক্যাসকেড সিস্টেমের P-H ভায়াগ্রাম অঙ্কন কর।

ভিতর সমকেত 🛭 অনুশীলনী ও এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য ।

১৪। আধুনিক হিমায়কের ৪টি বৈশিষ্ট্য লেখ।

উষ্টর সর্যক্তিত হ্র অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য ।

১৫। হিট পাম্পের প্রয়োগ ক্ষেত্রগুলো লেখ।

উচর সমকেত ছ) অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রুষ্টব্য ।

১৬। CFC হিমায়কে কীভাবে পরিবেশের ক্ষতি করে?

উচর সম্কেত 👨 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্লোন্তর ৯ নং দ্রষ্টব্য ।

১৭ | RE = 90 kJ/kg এবং WD = 30 kJ/kg হলে Heat of Condensation কড?

উচর সম্কেত 💡 অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্লোত্তর ৬ নং দ্রষ্টব্য ।

১৮। দ্রুত ব্যালেন্সিং পদ্ধতির ধাপগুলো লেখ।

উষ্টর সংক্রেত ৪ সিলেবাস বহির্ভৃত।

১৯। শিকুইড ইন্টারকুলারসহ টু-স্ট্রেজ কম্প্রেসশন সিস্টেমের বর্ণনা দাও।

উচর সমকেত হ্র) অনুশীলনী ২ এর সংক্ষিপ্ত প্রন্নোন্তর ১ নং দ্রষ্টব্য।

২০। মান্টিস্টেজ ও ক্যাস্কেড সিস্টেমের চারটি পার্থক্য লেখ।

🕏 হর সমকেত 🈜 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

গ-বিভাগ (মান ঃ ৪ 🗴 ৫ = ২০)

২১। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারী করার পদ্ধতি চিত্রের সাহায্যে বর্ণনা কর।

উচর সংক্রেত ও অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

২২। ওয়াটার ইন্টারকুলারসহ থ্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

তিহর সমকেত 🗿 অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

২৩। থ্রী স্টেব্জ ক্যাসকেড সিস্টেমের প্রবাহ চিত্র ও P-H ডায়াগ্রাম অন্ধন করে কার্যপ্রণালি বর্ণনা কর।

উত্তর সম্কেত ৪) অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৮ নং দ্রষ্টব্য ।

২৪। একটি 175 kW ক্ষমতাসম্পন্ন অ্যামোনিয়া ব্যবহৃত হিমায়ন চক্রের ঘনীতবন তাপমাত্রা 30°C এবং এক্সপানশন ডিভাইসে সেচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার (bar)। হিমায়ক (– 8°C) তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। নির্ণিয় কর ৪ (ক) চক্রের COP; খে) কম্প্রেসরের ক্ষমতা; গে) কভেন্দেশন ক্যাপাসিটি।

উষর সমকেত 😜 অনুশীলনী ১ এর উদাহরণ ১৬ নং দ্রষ্টক্য ।

২৫। সৌরশক্তি কাজে লাগিয়ে কীভাবে শীতাতপ নিয়ন্ত্রণ করা যায়, বর্ণনা কর।

উচর সংক্রেত ব্র অনুশীলনী ৫ এর রচনামূলক প্রশ্লোন্তর ৫ নং দ্রষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১১ টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশিনং

বিষয় ৪ এডভাঙ্গভ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬০

সময় ৪৩ ঘটা

পূৰ্ণমান ৪৫০

ক ও খ-বিভাগের সকল এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ১০ × ১ = ১০)

১ ৷ কেসকেট রেফ্রিজারেশন সিস্টেম বলতে কী বোঝায়?

ঠিতর সমকেত 🔊 অনুশীলনী ৩ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

২। হিট এক্সচেগ্রার কী কাজ করে লেখ।

্ঠিতর সম্প্রেক্ত 🔊 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রুটব্য।

ত। C.F.C বলতে কী ধরনের হিমায়ককে বোঝায় লেখ।

🕏 ৪র সমকেত 👸 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

৪ ৷ এনথালপি কী?

উচর সমকেত 🕫 অনুশীলনী ১ এর অতি সংক্ষি**ন্ত প্রশ্নোন্তর ১০** নং দুষ্টব্য 🕻

৫ । রিসাইক্রিং বলতে কী বোঝায়?

উচ্চর সম্প্রেক্ত ভ অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোক্তর ২ নং দ্রষ্টব্য।

৬। গ্রিনহাইজ ইফেক্ট কী?

্ঠিছর সম্প্রেক্ত 😝 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য :

৭। কম্প্রেসর অয়েল কী কাজ করে লেখ।

🕏 হর সমকেত 🛂 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য ।

৮। হিট পাম্প কী?

ভিতর সমকেত 🚱 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য ।

৯। সোলার হিটিং বলতে কী বোঝায় লেখ।

ঠিতর সমকেত 🗗 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ১ নং দ্রষ্টব্য।

১০। ইডাপোরেটিভ কুলিং সিস্টেম কী?

<mark>উভর সহকেত ভ</mark> অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দুষ্টব্য ।

খ-বিভাগ (মান $\$ > 0 \times 2 = 20$)

১১। ভেপার কম্প্রেশন রেফ্রিজারেশন পদ্ধতির সুবিধাগুলো লেখ।

তিরর সম্প্রেক্ত 😝 অনুদীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।

১২ । পরিবেশ বন্ধু হিমায়কের কী কী গুণাবলি থাকা প্রয়োজন লেখ।

ত্তরর সংক্রেত ও অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য ।

১৩। একটি ভাল কম্প্রেসর অয়েলের কী কী গুণাবলি থাকার প্রয়োজন লেখ।

😎র সংক্রেত 😜 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য।

১৪। হিমায়ক রিকোভারী করার প্রয়োজনীয়তা লেখ।

্ঠিছর সমকেত 🖅 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

১৫। ইন্টারকুলার কী কাজ করে লেখ।

্ঠিছর সমকেত 👂 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

১৬। রিসাইক্লিং এবং রিক্রেম এর পার্থক্যগুলো লেখ।

্ঠিছর সংক্রেত 🔊 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ১°নং দুষ্টব্য।

১৭। হিট পাম্পের তালিকা দাও।

উত্তর সমকেত স্থানিকানী ১০ এর অতি সংক্ষিপ্ত প্রশোভর ৩ নং দ্রম্ভব্য ।

১৮। হিট এক্সচেঞ্চার এর প্রয়োজনীয়তা লেখ।

্<mark>উতর সমকেত র</mark> অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্লোন্তর ৭ নং দ্রটব্য।

১৯। আদর্শ হিমায়কের কী কী গুণাবলি থাকার প্রয়োজন তা লেখ।

্ট্রর সংক্রেন্ত ভ্র অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রাষ্টব্য।

২০। ব্যাক প্রেসার ভালভ কী কাঞ্জ করে লেখ।

ঠিচর সমকেত हो অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

গ-বিভাগ (মান 8 8 × ৫ = ২০)

২১। কেসকেট রেফ্রিজারেশন পদ্ধতিতে কীভাবে নিমু তাপমাত্রা সৃষ্টি করে তা বর্ণনা কর।

তিচর সম্বেক্ত 🖁 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

২২। একটি ১৫ × ১৫ সে.মি. স্ট্রোক এবং গ্যাস এর ২ সিলিভার বিশিষ্ট অ্যামোনিয়া কম্প্রেসর প্রতি মিনিটে ৪৮০ বার ঘুরলে ঐ কম্প্রেসর এর শীতল ক্ষমতা কত হবে?

উষ্ট্র সংক্রেত ভ সিলেবাস বহির্ভৃত।

২৩। লিকুইড টার্বো সোলার হীটার এর কার্যপ্রণালি বর্ণনা কর।

তিচর সম্বেক্ত 👂 অনুশীলনী ৪ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

- ২৪। একটি R-12 হিমায়কের থার্মোডায়নামিক্স প্রোপারটি সাকসন উষ্ণতায় বাষ্পীয় হিমায়ক এর আপেক্ষিক আয়তন এবং এনথালপি যথাক্রমে ১৫° সে. উষ্ণতার $V=\lambda$ ২.৭ লি/কেজি, এবং এনথালপি ২২৩.৫৪ কি.জু/কেজি। বাষ্পীয় হিমায়ক সংকোচন এর পর এনথালপি ৩৪৪.৯৪ কি.জু/কেজি এবং হিমায়কের প্রসারণ এনথালপি ১৩৫.৩৪ কি.জু/কেজি হয় তবে বাহির কর যে,
 - (ক) কার্যকরী হিমায়ন। (খ) কম্প্রেসরের বাষ্প। (গ) হিমায়কের প্রবাহের পরিমাণ। (ঘ) COP.

্ট্রর সম্কেত র অনুশীলনী ১ এর উদাহরণ ১.১৫ নং দ্রটব্য।

২৫। হিট পাম্পের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

😎র সমকেত 🕫 অনুশীলনী ১০ এর রচনামূলক প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম
৬৯ পর্ব পরিপুরক পরীক্ষা-২০১২
টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশিনং

বিষয় ঃ এডভাপভ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬০

সময় ঃ ৩ ঘটা

পূৰ্ণমান ৪ ৫০

ক ও ব-বিভাগের সকল এবং গ-বিভাগের বে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ১০ × ১ = ১০)

১। গ্লোবাল ওয়ার্মিং পটেনশিয়াল (GWP) বলতে কী বোঝায়?

(ঠছর সমকেত 🗗) অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।

২। P-H চার্টের প্রধান অঞ্চলগুলোর নাম লেখ।

ঠিচর সহকেত 🖁 অনুশীলনী 🕽 এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

৩। ক্লাউড পয়েন্ট কী?

(ইত্তর সম্প্রেক্ত g) অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

৪ - ক্যাসকেড কন্তেলার কাকে বলে?

তিষর সম্মেকত হ্রা অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

ে ফ্রাট প্লেট ক'লেইর কী কী উপাদান নিয়ে গঠিত?

🕏 इंड সক্তকত 🖁 অনুশীদনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য 🕫

৬ : ভাল (O3) ডিপ্লেশন বলতে কী বোঝায়?

ঠিডর সহকেন্ড ট্র অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রুষ্টব্য।

৭ : ইন্টারকুলারের কাজ কী?

ঠিয়র সমকেত 🚱 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

৮। দ্রপ ইন হেক্রিজারেন্ট বলতে কী বোঝায়?

ঠিছর সক্তকত 🖁 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

৯। হিট পাস্পের ৪টি ব্যবহার ক্ষেত্রের নাম দেখ।

ঠিছর সক্তকত 🖥 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য :

১০। দ্রাই আইসের সংজ্ঞা দাও।

ঠিচর সম্প্রকত 🗗 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

ব-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। চিত্রসহ কাউন্টার ফ্লো হিট এক্সচেঞ্চারের বর্ণনা দাও।

<mark>ঠিচর সম্প্রকত ছু</mark>) অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

🔻 ১২ । গ্রীনহাউজ প্রতিক্রিয়া ব্যক্ত কর ।

(উষ্টর সংক্রেড 🛭) অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দুষ্টব্য।

আডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং-৩৩

১৩। রেফ্রিজারেন্টকে কীভাবে রিকোভারি করা যায়, চিত্রসহ লেখ।

উচর সম্প্রেক্ত 👸 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য i

১৪। প্যাড টাইপ ইভাপোরেটিভ কুলারের চিত্র অন্ধনপূর্বক বিভিন্ন অংশের নাম লেখ।

ঠিচর সহকেত 🖁 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

১৫। আধুনিক হিমায়কের ৪টি বৈশিষ্ট্য স্পেখ।

ঠিচর সমকেত 🗗 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোন্ডর ১১ নং দ্রষ্টব্য :

১৬। সোলার হীট কালেক্টরগুলোর নাম লেখ।

উচন সংক্রেত ভা অনুশীলনী ৪ এর সংক্ষি**ও প্রশো**ন্তর ৮ নং দ্রষ্টব্য :

১৭। কুইক-ফ্রিজিং এবং শ্লো-ফ্রিজিংয়ের মাঝে পার্থক্য লেখ।

ঠিচর সংক্রেড 🚱 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্লোন্তর ৯ নং দ্রষ্টব্য ।

১৮। ক্যাসকেড সিস্টেম ব্যবহারের কী কী সুবিধা পাওয়া যায়?

ঠিচর সম্মকত 🛭 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য :

১৯। আধুনিক হিমায়কের জন্য ব্যবহৃত তেলের গুণাবলি লেখ_া

উত্তর সংক্রেত 🔊 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৬ নং দ্রষ্টব্য ।

২০। নিম্ন-তাপমাত্রা উৎপাদানের ক্ষেত্রে ড্যাপার কম্প্রেশন রেফ্রিজারেশন সিস্টেমের সীমাবদ্ধতাগুলো লেখ।

ঠিচর সংক্রেড 💅) অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।

গ-বিভাগ (মান ঃ 8 × ৫ = ২০)

২১। চিত্রসহ ওয়াটার ইন্টারকুলার সহযোগে খ্রী-স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি বর্ণনা কর।

উচর সংক্রেত । অনুশীলনী ২ এর রচনামূলক প্রশ্লোন্তর ৪ নং দ্রষ্টব্য ।

২২। হিমায়ক R-12 এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড (HE-Blend) চার্জ্স করার পদ্ধতি বর্ণনা কর।

উচর সম্কেত 🛭 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৫ নং **দু**ষ্টব্য।

২৩। কুলিং ও হিটিং মুডসহ হিট পাস্পের কার্যপ্রণালি বর্ণনা কর।

<mark>উত্তর সম্ফেত্ত ভ্র</mark> অনুশীলনী ১০ এর রচনামূলক প্রশ্নোত্তর ৪ নং দুষ্টব্য।

২৪। শীতাতপ নিমন্ত্রণ ব্যবস্থায় সোলার হিটকে কীভাবে ব্যবহার করা যায়, তা চিত্রসহ বর্ণনা কর।

উচর সম্কেত ভূ অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

২৫। একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইজাপোরেটিং তাপমাত্রা (–10°C) এবং কন্ডেনিং তাপমাত্রা 35°C। হিমায়ক কম্প্রেসর প্রবেশ করে 5°C তাপমাত্রায় বাস্পীয় অবস্থায় সম্পৃক্ত তরলের এনথালপি 230 kJ/kg, সম্পৃক্ত বাস্পের এনথালপি 330 kJ/kg, স্পারহীটেড বাস্পের এনথালপি 360 kJ/kg হলে নির্ণয় কর 8

(ক) হিমায়কের পরিমাণ; (ব) কভেন্সারের ক্ষমতা; (গ) COP।

ঠঁছর সম্কেত 😜 অনুশীলনী ১ এর উদাহরণ ১০ নং দুষ্টব্য ।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১২ টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকন্তিশিনং (২০০৫ প্রবিধান)

বিষয় ঃ এডভাপভ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

বিষয় কোড ঃ ৩২৬০

সময় ঃ 😊 ঘণ্টা

পূৰ্ণমান ঃ ৫০

ক ও ব-বিভাগের সকল এবং গ-বিভাগের যে কোন ৪ (চার)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ ১০ × ১ = ১০**)

১। P-H চার্টের তিনটি অঞ্চলের নাম লেখ।

ঠিচর সমকেত 🖁 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

২। ফ্লাল চেম্বার ব্যবহার করা হয় কেন?

ইচর সংক্রেড ব্রু অনুশীলনী ২ এর অতি সংক্রিপ্ত প্রশ্নোত্তর ৩ নং দ্রুষ্টব্য ।

৩। আদর্শ হিমায়কের ভৌত গুণাবলি কী?

🗦 হর সংক্রেত 🖁 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

৪ ৷ ইউটেকটিক ফুইডের ব্যবহার লেখ ৷

🗦 🗷 সংক্রেত 👂 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১১ নং দ্রন্টব্য ।

৫। রিকোভারী ও রিক্রেইম এর মাঝে ২টি পার্থক্য লেখ।

ঠিচর সমকেত 🕏 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোতর ১১ নং দ্রাষ্টব্য ।

৬। হিট পাম্পের COP নির্ণয়ের সূত্রটি দেখ।

😎র সহকেত 🔊 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য। 🕟

९। হিমায়ক 134a এর রাসায়নিক সংকেত ও ফুটনাংক লেখ।

্ঠিতর সম্বক্তেত এ অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।

৮। CFC বলতে কী বোঝায়?

ঠিছর সম্প্রেক্ত ব্র অনুশীলনী ৭ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১ নং দুষ্টব্য ।

৯। ক্লাউড পয়েন্ট বলতে কী বোঝায়?

ইচর সংক্রেত 🔊 অনুশী**ল**নী ৮ এর অতি সংক্ষিপ্ত প্রশ্লোম্ভর ৭ নং দ্রষ্টব্য ।

১০ ৷ গ্লোবাল ওয়ার্মিং পটেনশিয়াল বলতে কী বোঝায়ং

্টিচর সম্ফেন্ড 🖁) অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোশুর ৩ নং দ্রষ্টব্য ।

ব-বিভাগ (মান ঃ ১০ × ২ = ২০)

১১। একটি মান্টিস্টেজ কম্প্রেশন হিমায়ন চক্র অন্ধন কর।

উচর সংক্রেত 🕏 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রুটব্য ।

১২। মান্টিস্টেজ ও ক্যাসকেড সিস্টেমের চারটি পার্থক্য দেখ।

্ঠিচর সম্ফেন্ড 😝 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

১৩। লিকুইড সোলার কালেষ্টর কীভাবে কাঞ্চ করে?

ঠিতর সমক্রেত 🖁 অনুশীলনী ৪ এর সংক্ষিত্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য ।

১৪। গ্রীনহাউজ ইফেট কমানোর উপায় বর্ণনা কর।

উত্তর সমকেত 🖁 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রুষ্টব্য ।

১৫। হিমায়ক 69s এর পাঁচটি ভাল বৈশিষ্ট্য বর্ণনা কর।

ঠিতর সম্ফেত 🕏 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।

১৬। পুনঃলাভ এবং পুনঃচক্রায়নের ব্যাখ্যা দাও।

ঠিতর সম্ফেত 🔊 অনুশীলনী ৯ এর সংক্ষিত্ত প্রশ্নোতর ৫ নং দ্রষ্টব্য।

১৭। লিকুইড ইন্টারকুলারসহ টু-স্টেজ কদেপ্রশন সিস্টেমের বর্ণনা দাও।

ঠিচর সম্প্রকৃত । অনুশীলনী ২ এর সংক্ষিত্ত প্রদ্রোত্তর ৪ নং দ্রষ্টব্য।

১৮। কৃত্রিম উপায়ে বরফ তৈরি পদ্ধতি বর্ণনা কর।

ঠিতর সহক্রেত 🖁 অনুশীলনী ৯ এর সংক্রিও প্রশ্নোত্তর ৪ নং দ্রষ্টব্য।

১৯। একটি হিট এক্সচেঞ্জার ডিজাইন করতে কী কী ফ্যান্টর বিবেচনা করা হয়?

তিরর সহকেত অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রুষ্টব্য।

২০। ইভাপোরেটিভ ফুলার চিত্রসহ বর্ণনা কর।

ভিতর সমক্রেত 🕝 অনুশীলনী ১২ এর সংক্রিও প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

ণ-বিভাগ (মান : 8 × ৫ = ২০)

২১। শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সৌরশন্তিকে কীভাবে প্রয়োগ করা যায়, এর সচিত্র বর্ণনা দাও।

উত্তর সম্প্রেড ট অনুশীলনী ৫ এর রচনাযুলক প্রল্লেন্ডর ৫ নং দুষ্টব্য

২২। ওয়াটার ইন্টারকুলার, লিকুউড সাব-কুলার এবং ফ্লাল ইন্টারকুলারবৃত টু-নেটজ কলেপ্রালন পদ্ধতির প্রবাহ চিক্র এবং চুল ভায়াগ্রাম অঞ্চল কর।

উভর সমকেত 🔊 অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৩ নং দ্রষ্টব্য।

২৩। রেট্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারি করার পদ্ধতি চিত্রের সাহাব্যে বর্ণনা কর।

ঠিতর সমকেত 👸 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৬ নং প্রউব্য :

২৪। সোলার ছিট ব্যবহৃত অ্যাবহুর্পশন রেফ্রিক্সারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।

তিহর সমকেত অনুশীলনী ৫ এর রচনামূলক প্রদ্রোত্তর ও নং দ্রইব্য।

২৫। একটি R-12 হিমায়ন যদ্রের ক্ষমতা 25 টন, যার ইডাপোরেটিড তাপমাত্রা (–10)° সেঃ এবং কডেলিং তাপমাত্রা 35° সে হিমায়ক কম্প্রেসরে প্রবেশের পূর্বে 5° সেঃ তাপমাত্রায় উত্তর্ভ হয়। সম্পৃক্ত তরলের এনধালপি 230 kJ/kg; সম্পৃক্ত বালে এনাধালপি 330 kJ/kg, সুপারহিটেড বাল্পের এনধালণি 360 kJ/kg হলে নির্ণয় কর ৪

(ক) হিমায়ক প্রবাহের হার; (ব) কম্প্রসরের ক্ষমতা; (গ) COP।

উচর সম্প্রত অনুশীলনী ১ এর উদাহরণ ১০ মং প্রটব্য ।

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬৯ পর্ব সমাপনী পরীক্ষা-২০১৪

টেকনোগজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং (২০১০ প্রবিধান), পরীক্ষার তারিখ ঃ ১৫/১/২০১৫

বিষয় ঃ এডভাগভ রেফিজারেশন আভ এয়ারকভিশনিং বিষয় কোড ঃ ৭২৬১

সময় ৪ ৩ ঘটা

পূৰ্ণমান ৪ ১২০

ক ও খ-বিভাগের সকল এবং গ-বিভাগের যে কোন ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও। ক-বিভাগ (মাদ ঃ ১৫ × ২ = ৩০)

🔰 । বিক্লেইম বলতে কী বুঝায়?

🔞 রুর সহক্রেন্ত 👸 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোস্তর ও নং দ্রাইবা।

২। এনথালপি কী?

তিষ্কর সংক্রেক্ত 👸 অনুশীলনী ১ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ১০ নং দ্রটব্য।

৩ ক্লাউড পয়েন্ট বলতে কী বৃঝায়?

(উভন্ন সংক্রেড 🔊 অনুশীলনী ৮ এর অতি সংক্রিও প্রশ্নোত্তর ৭ নং দুটব্য ।

৪ কাসকেড রিফ্রিন্সারেশন কাকে বলে?

বিষয় সক্তব্য 🗟 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দুটবা ।

ে হিট এক্সচেক্সারের কাজ কী?

🗃 বিষয় সম্প্রেক 🚱 অনুশীলনী ১১ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১ নং দুটবা।

৬। রিসাইক্লিং বলতে কী বুঝায়?

(উম্ম সংক্রেড 🖁) অনুশীলনী ৯ এর অতি সংক্রিও প্রশ্নোন্তর ২ নং দুটবা।

৭। গ্রোবাদ ওয়ার্মিং পটেমশিয়াল কী?

(ইয়র সহক্ষেত 🖁) অনুশীলনী ৭ এর সংক্ষিও প্রস্নোত্তর ৪ নং দুটবা।

৮ | P-H ভায়াগ্রামের প্রধান অঞ্চলগুলো কী কী?

(উম্ম সংক্রেড 🗗 অনুশীলনী ১ এর অতি সংক্রিও প্রস্লোত্তর ৭ নং প্রটব্য।

৯ ৷ ক্যাসকেড কভেলারের কাজ কী?

্ঠিয়র সম্প্রেক্ত 🕝 অনুশীলনী ও এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং প্রইব্য ।

১০। ফ্রান চেম্বরের দৃটি কাজ লেখ।

(উভন্ন সম্প্রকৃত 🖫 অনুশীলনী ২ এর অতি সংক্ষিত্ত প্রস্লোত্তর ৩ নং দ্রাইব্য।

১১। আদর্শ হিমায়কের ভৌত গুণাবলি কী কী?

ত্তিরর সম্ফেন্ড 🔛 অনুশীলদী ৬ এর সংক্ষি**ও প্র**ল্লোন্তর ৭ মং দ্রইব্য।

১২। ইউটেকটিক ফুইডের ব্যবহার লেখ।

ভিত্তর সম্প্রকাত 🔊 অনুশীলদী ৮ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১১ দং দ্রউব্য।

১৩। CFC বলতে কোন ধরনের হিমায়ককে বুঝায়?

ঠিচর সহকেত 🖥 অনুশীলনী ৭ এর অতি সংক্ষিত প্রস্লোতর ১ নং দ্রটব্য।

১৪। সোলার হাঁটিং কী?

ঠিতর সমকেত 🖟 অনুশীলনী ৪ এর অতি সংক্রিত প্রশ্নোত্তর ১ নং প্রষ্টব্য ।

১৫। ইভাপোরেটিভ কুলিং সিস্টেম বলতে কী বুঝায়?

😇 হর সম্প্রকত 🖥 অনুশীলনী ১২ এর অতি সংক্ষিও প্রশ্নোতর ১ নং প্রষ্টব্য ।

```
રહ
                                                         খ-বিভাগ (মান ঃ ১০ × ৪ = ৪০)
            ১৬। একটি মান্টিস্টেজ কম্প্রেশন হিমায়ন চক্র অন্তন কর।
20
                  ঠিতর সংক্রেন্ত 🛐 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।
            ১৭। মাল্টিস্টেজ ও ক্যাসকেড সিস্টেমের পার্থক্য লেখ।
18
                  উত্তর সম্মেক্ত 🗟 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং প্রষ্টব্য ।
            ১৮। লিকুইড সোলার কালেব্রুর কীভাবে কাজ করে?
20
                  ইচর সম্ফেন্ত 🛐 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দুষ্টব্য ।
            ১৯। খীনহাউজ ইফেক্ট কমানোর উপায় বর্ণনা কর।
                  🕏 🕫 সম্প্রেক্ত 🗗 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দুষ্টব্য ।
24
            ২০ ৷ রিকোভারি ও রিক্রেইম ব্যাখ্যা কর :
                  উত্তর সম্ফকত 🛐 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশোল্রর ১ ও ২ নং দুট্টব্য ।
            ২১ - পিকুইড ইন্টারকুলারসহ টু-স্টেজ কম্পেরন সিস্টেম চিত্রে নেখাও
                  উচর সংক্রেত 🗗 অনুশীলনী ২ এর সং<del>ক্</del>রিত প্রস্লোভর ৪ নং নুট্রব
            ২২। কৃত্রিম উপায়ে বরুফ তৈরি পদ্ধতি সংক্রেপে লেব ,
                  ঠিচর সংক্রেত 📳 অনুশীলনী ৯ এর সংক্রিও প্রশ্নোন্তর ৪ নং দ্রাইব্য।
            ২৩। একটি হিট এক্সচেগ্রার নির্বাচনে বিবেচ্য বিষয়গুলো কী কী?
                  উচর সংক্রেত 🗿 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য :
            ২৪। কৃইক ফ্রিজিং এবং লো-ফ্রিজিং এর পার্থকা কী?
                  ্টিছর সম্প্রকত 💅 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দুষ্টব্য ।
            ২৫ । <mark>আধুনিক হিমায়কে</mark>র জন্য ব্যবহৃত তেলের গুণাবলি কী কী?
                 🗗 🗗 🗗 🗗 অনুশীলনী ৮ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দুষ্টব্য ।
                                                         প-বিভাগ (মান ঃ ১০ 🗴 ৫ = ৫০)
            ২৬। হািমায়ক-১২ এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড চার্জ করার পদ্ধতি বর্ণনা কর।
                 তিষ্কর সংক্রেক্ত 🕝 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।
            ২৭। ওয়াটার ইন্টারকুলার, লিকুইড সাব-কুলার ও ফ্লাল ইন্টারকুলারযুক্ত টু-স্টেজ কম্প্রেশন পদ্ধতির প্রবাহ চিত্র ও P-H জ
                 অন্ধন কর।
                  ঠিচর সংক্রেন্ত অনুশীলনী ২ এর রচনামূলক প্রশ্নোন্তর ৩ নং দুষ্টব্য।
            ২৮। রিফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোডারি করার পদ্ধতি চিত্রের সাহায্যে বর্ণনা কর।
                 ঠিচর সম্প্রেক্ত 📳 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
            ২৯। প্রী-স্টেজ ক্যাসকেড সিস্টেমের প্রবাহ চিত্র ও P-H ডায়াগ্রাম অঙ্কন করে কার্যপ্রণালি বর্ণনা কর।
                 (ঠছর সমকেত 🖁) অনুশীলনী ৩ এর রচনামূলক প্রশো্রের ৮ নং দুটব্য ।
           ৩০। সোলার হিট ব্যবহৃত অ্যাবজর্পশন রিফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।
                 ঠিচর সম্প্রকৃত 🛃 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
           ৩১ ৷ একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইভাপোরেটিভ তাপমাত্রা (-10° সে.) এবং কভেদিং তাপমাত্রা (35 ৫
                 হিমায়ক কম্প্রেসরে প্রবেশের পূর্বে 5°সে, তাপমাত্রায় উত্তপ্ত হয়। সম্পৃক্ত তরলের এনধালপি 230kJ/kg, সম্পৃক্ত বা
                 এনখালপি 330kJ/kg, সুপারহিটেড বাস্পের এনখালপি 360 kJ/kg হলে নির্ণয় কর ঃ (ক) হিমায়ক প্রবাহের
                 (ব) কম্প্রেসরের ক্ষমতা; (গ) COP (
                 ঠিচর সম্প্রকৃত 🔊 অনুশীলনী ১ এর উদাহরণ ১০ এর অনুরূপ।
           ৩২ · কুলিং ও হিটিং মুডসহ দুটি পাস্পের কার্যপ্রণালি বর্ণনা কর।
                  🕏 চর সক্তকত 💅 অনুশীলনী ১০ এর রচনামূলক প্রশ্নোন্তর ৪ নং দুষ্টব্য ।
```

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং শিক্ষাক্রম ৬র্চ পর্ব পরিপূরক পরীক্ষা-২০১৫

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং (২০১০ প্রবিধান) [পরীক্ষার তারিখ ঃ ১/৮/২০১৫]

বিষয় ঃ অ্যাভভান্স রেফ্রিজারেশন অ্যাক্ত এয়ারকভিশনিং

বিষয় কোড ঃ ৭২৬১

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ঃ ১২০

ক ও খ-বিভাগের সকল এবং গ-বিভাগের যে কোন ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও। ক-বিভাগ (মান ঃ ২ × ১৫ = ৩০)

এনথালপি বলতে কী বোঝায়?

ইত্তর সংক্রেত 🖁 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য।

২। সাবকুলড লিকুইড বলতে কী বোঝায়?

🔁 হর সহকেত 🖁 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রস্টব্য।

ক্যাসকেড সিস্টেম বলতে কী বোঝায়?

(ইচর সংক্রেত 🖁) অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

৪। এয়ার সোলার কালেন্ট্রর বলতে কী বোঝায়?

উচর সংক্রেত 😝 অনুশীলনী ৪ এর অতি সংক্ষিপ্ত প্রশ্লোপ্তর ৬ নং দ্রষ্টব্য।

৫। ফ্র্যাট প্লেট কালেক্টর কী কী উপাদান দিয়ে গঠিত?

ইত্তর সম্বক্তে ন্ত্র অনুশীলনী ৪ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।

৬। সোলার কুলিং পদ্ধতি বলতে কী বোঝায়?

🔁 🗗 সম্প্রেক্ত 😝 অনুশীলনী ৫ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ১ নং দ্রাষ্টব্য ।

৭। হিমায়কের সুপ্ততাপ কীরূপ হওয়া উচিত?

😎 সম্প্রেক 🖁 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দুষ্টব্য।

৮। হিমায়ক R-134-a-এর রাসায়নিক সংকেত লেখ।

উত্তর সম্প্রকত 🕝 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য।

৯। G.W.P বলতে কী বোঝায়?

উচর সহকেত 🚱 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দুষ্টব্য।

১০। গুজোন ডিপ্লেশন বন্ধতে কী বোঝায়?

🔁 হর সংক্রেত 🖁 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য।

১১ ৷ কম্প্রেসর অয়েল কেন ব্যবহৃত হয়?

উভন্ন সংক্রেন্ত ভা অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য।

১২। HFC হিমায়কে যে তেল ব্যবহৃত হয়, এটির নাম লেখ।

ত্তিক সংক্রেত 👸 অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রষ্টব্য ।

১৩। ড্রাই আইস বলতে কী বোঝায়?

(ইচর সহকেত g) অনুশীলনী ৯ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।

১৪। হিট পাম্পের COP নির্ণয়ের সূত্রটি লেখ।

ইত্তর সহকেত । অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দুষ্টব্য ।

১৫। ইভাপোরেটিভ কুলিং সিস্টেম বনতে কী বোঝায়?

উচর সমকেন্ত s অনুশীলনী ১২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১২ নং দ্রষ্টব্য ।

াহাম

স.) । জ্পের

হার:

```
অ্যাডডাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকতিশনিং
       ١٩
                                                                 খ-বিভাগ (মান ৪৪ × ১০ = ৪০)
                     ২৬৪
                      ১৬। একটি সম্পৃত সরল হিমায়ন চত্তের P-H ডায়াগ্রাম অন্তন কর।
       75 1
                            ত্তিহয় সংক্রেত ও অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দুষ্টব্য।
                       ১৭। মাল্টিইভাপোরেটর সিস্টেমের অসুবিধাগুলো লেখ।
      186
                             ত্তির সংক্রেত । অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য।
                       ১৮। মাশ্চিস্টেজ ও ক্যাসকেড সিস্টেমের মাঝে পার্থকাণ্ডলো লেখ।
      ২০ ৷
                              ঠিতর সম্বক্তে । অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।
                        ১৯। বিভিন্ন প্রকার সৌরতাপ সংগ্রাহকের নাম লেখ।
      ₹5 |
                              ঠিতর সহকেত । অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য।
     २२ । कृद्धि
                         ২০। আধুনিক হিমায়কের সুবিধাণ্ডলো লেখ।
                               ঠিতর সংক্রেত হ অনুশীলনী ৬ এর সংক্রিপ্ত প্রশ্নোতর ১১ নং দুষ্টব্য।
           ਤੋਰ:
                          ২১। হিমায়ক রিকোভারি ও রিক্রেম বলতে কী বোঝায়?
     ২৩। একটি
                                 স্তিচর সমকেত s) অনুশীলনী ৯ এর অতি সংক্ষিত্ত প্রশ্নোতর ১ ও ৩ নং দ্রষ্টবা।
          ठेरव
    ২৪। কুইক
                                 ঠিচর সংক্রেত s অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোতর ৪ নং দ্রষ্টব্য ।
                            ২২। ইট পাত্স ব্যবহারের উদ্দেশ্যগুলো লেখ।
          उँठतः
                            ২৩। ক্রন ফ্রো হিট এক্সচেঞ্চারের চিত্র অস্কন কর।
    ২৫। আধুনিক
                                  ঠিচর সংক্রেত ৪ অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য।
         উরর স
                             ২৪। ইভাপোরেটিভ কুলারের অসুবিধাণ্ডলো লেখ।
                                    উচর সংক্রেত । অনুশীলনী ১২ এর সংক্রিত প্রশ্নোতর ৫ নং দ্রষ্টবা।
   ২৬। হািমায়ক-
                              ২৫। সি.এফ.সি হিমায়ক কীভাবে পরিবেশকে ক্ষতি করে, লেখ।
        উরর সংগ্র
                                    ্ঠিতর সংক্রেত হ অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ৯ নং দ্রষ্টব্য ।
   ২৭। ওয়াটার 🚁
                                                                          গ-বিভাগ (মান ৪ ১০ × ৫ = ৫০)
                               ২৬। শীতাতপ নিয়ন্ত্রণ ব্যবস্থায় সৌরশক্তিকে কীভাবে প্রয়োগ করা যায়, সচিত্র বর্ণনা কর।
        আন্ধন কর।
        উচর সহকে
                                      উচর সমকেত ও অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।
                                ২৭। ওয়াটার ইন্টারকুলারসহ প্রী স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।
  ২৮। রিফ্রিজারেশন
        ठैवत मध्कर
                                       উত্তর সম্প্রকত है অনুশীলনী ২ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টবা।
  ২৯। খ্রী-স্টেজ ক্যাস
                                 ২৮। কুলিং ও হিটিং মুডসহ হিট পাস্পের কার্যপ্রণালি বর্ণনা কর।
       ইচর সহকেত
                                       উত্তর সংক্রত है অনুশীলনী ১০ এর রচনামূলক প্রশ্নোন্তর ৪ নং দ্রষ্টবা।
 ৩০। সোলার হিট ব্য
                                   ২৯। প্যাত টাইপ ইভাপোরেটিভ কুলারের চিত্রসহ বর্ণনা দাও।
      উচর সংক্রেড
                                        ঠিছর স্থকেত s) অনুশীলনী ১২ এর রচনামূলক প্রশ্নোত্তর ৪ নং দুউবা।
 ৩১। একটি R-12 হিম
                                   ৩০। বরফের মাধ্যমে হিমায়ক পুনঃলাভ পদ্ধতি চিত্রসহ বর্ণনা কর।
      হিমায়ক কম্প্রেসং
                                    ৩১। একটি R-12 হিমায়ন যন্ত্রের ক্ষমতা 25 টন, যার ইভাপোরেটিভ তাপমাত্রা (-10°C) এবং কভেনিং তাপম
      এনথালপি 330kJ
                                          ক্দেপ্রসারে প্রবেশের পূর্বে 5°C তাপমাত্রায় উত্তপ্ত হয়। সম্পৃত্ত তরলের এনখালপি 230 kJ/kg, সম্পৃত বা
      (খ) কম্প্রেসরের দ্ব
                                          kJ./kg। সুপারহিটেড বাস্পের এনথালপি 360 kJ/kg হলে নির্ণয় কর ৪ (ক) হিমায়কের পরিমাণ; (খ)
      ঠিচর সৎকেন্ড 🖥 🥫
৩২ । কুলিং ও হিটিং মুডসঃ
                                           (গ) COP; (ঘ) কন্ডেন্সারের ক্ষমতা।
      উচ্চ সংক্রেড 🧧
                                            স্তিত্র সম্পক্ষত ও অধ্যায় ১ এর উদাহরণ ১.১০ নং দ্রষ্টব্য।
                                       ৩২। হিমায়ক আর-১২-এর পরিবর্তে হাইড্রোকার্বন ব্লেন্ড চার্জ করার পদ্ধতি বর্ণনা কর।
                                             ঠিচর সহকেত । অনুশীলনী ৯ এর রচনামূলক প্রশোত্তর ৫ নং দ্রষ্টবা।
```

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং ৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১৫

[পরীক্ষার তারিখ ঃ ৭/১/২০১৬]

টেকনোলজি ঃ রেফ্রিজারেশন আভি এয়ারকভিশনিং (২০১০ প্রবিধান)

বিষয় ঃ অ্যাডভাগড রেফ্রিজারেশন অ্যাভ এয়ারকভিশনিং

(বিষয় কোড ঃ ৭২৬১)

<u>इ.इ.स्</u>यो

পূৰ্ণমান ৯১২০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ২ × ১৫ = ৩০)

🖂 সার্টের প্রধান অঞ্চলগুলোর নাম লেখ।

🗫র সমকেত 🚱 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রষ্টব্য 🛭

হিট অব কনডেন্সেশন বলতে কী বুঝায়?

্রিষর সংক্রেত 🗗 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১২ নং দ্রষ্টব্য ।

🕶 ব্ৰুন্ড লিকুইড বদতে কী বুঝায়?

উঃর সংক্রেন্ত 🕝 অনুশী**ল**নী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রুষ্টব্য।

দ্যুক্ত প্রেসার ভালভ-এর কাজ কী?

😎 ক্রম্বক্ত 😝 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য।

চাট প্লেট কালেকটর কী কী উপাদান নিয়ে গঠিত?

🕏 इत সন্দক্তে 🕝 অনুশীঙ্গনী ৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য :

তুন উদ্রাবিত ৩টি হিমায়কের নাম লেখ।

🗫 রুর সম্ফেত 🎖 সনুশীলনী ৬ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ১১ নং দ্রষ্টব্য।

মায়ক 134a-এর সাথে ব্যবহৃত তেলের নাম লেখ।

ছির 🖥 কেসটাল আইসমেটিক ইস্টার অয়েল :

FC की?

ভর সহকেত 🔊 অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

জান (O₃) ডিপ্লেশন বলতে কী বুঝায়?

ভ্রু সন্দেত্ত ব্রু অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য।

রে সংক্রেত ব্রু অনুশীলনী ৮ এর অতি সংক্রিপ্ত প্রশ্লোন্তর ৫ নং দুষ্টব্য ।

দ্রক রিক্রেইম বলতে কী বুঝায়?

শ্মান্রা 3 সমকেত ব্র অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রষ্টব্য। নাম্পের ইন-রেফ্রিজারেন্ট বলতে কী বুঝায়?

্রিক্তের সহক্রেন্ত ব্র অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য । শাস্প কী?

সেহকেত ব অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোপ্তর ২ নং দ্রষ্টব্য।

D বলতে কী বুঝায়?

সহকেত জ্ব অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য :
গারেটিভ কুলিং সিস্টেমের অসুবিধা কী কী?

সমকেত 💆 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রন্তব্য।

ডিপ্রোমা-ইন-ইঞ্জিনিয়ারিং

৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১৫

[পরীক্ষার তারিখ ঃ ৭/১/২০১৬]

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং (২০১০ প্রবিধান)

বিষয় ঃ অ্যাডভাঙ্গড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

(বিষয় কোড ঃ ৭২৬১)

∎ ¢ स्कें)

পূৰ্ণমান ৯১২০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোন ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও।

ক-বিভাগ (মান **ঃ** ২ × ১৫ = ৩০)

Pan সার্টের প্রধান অঞ্চলগুলোর নাম লেখ।

উডর সম্ফেত ও অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রউব্য ।

হিট অব কনডেন্সেশন বলতে কী বুঝায়?

উচর সংক্রেন্ত 🚱 অনুশীলনী ১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১২ নং দ্রষ্টব্য ।

🕶 হ কুন্ড লিকুইড বদতে কী বুঝায়?

ইয়র সম্মেকত 💡 অনুশীলনী ২ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রষ্টব্য।

হ্যক প্রেসার ভালভ-এর কাঞ্জ কী?

ভিত্তর সংক্রেন্ত 🕝 অনুশীলনী ৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

দ্যাট প্লেট কালেকটর কী কী উপাদান নিয়ে গঠিত?

উচর সংক্রেত 🕙 অনুশীলনী ৪ এর অতি সংক্ষিত্ত প্রশ্নোত্তর ৪ নং দ্রউব্য i

তুন উদ্ভাবিত **৩টি হি**মায়কের নাম লেখ।

💶 সম্প্রকত 🕙 অনুশীলনী ৬ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১১ নং দ্রষ্টব্য ।

মায়ক 134a-এর সাথে ব্যবহৃত তেলের নাম লেখ।

চরর ব্ল কেসটাল আইসমেটিক ইস্টার অয়েল।

FC की?

ভর সংক্রেত ব অনুশীলনী ৭ এর অতি সংক্রিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।

জান (O3) ডিপ্লেশন বলতে কী বুঝায়?

sa সংক্রেত ব্লী অনুশীলনী ৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য ।

: পয়েন্ট কী?

দ্ধ সংক্রেত অনুশীলনী ৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

ায়ক রিক্লেইম বলতে কী বুঝায়?

ক্মাত্রা 3 সমকেত 🔊 অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্লোত্তর ৩ নং দ্রষ্টব্য।

বাস্পের ইন-রেফ্রিজারেন্ট বলতে কী বুঝায়?

্বা ক্রের ক্রিক্ত । অনুশীলনী ৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য।

শাম্প কী?

স্থেকত 🔊 অনুশীলমী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ২ নং দ্রষ্টব্য।

'D বলতে কী বুঝায়?

সম্ক্রেত 🖥 অনুশীলনী ১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য ।

ারেটিভ কুলিং সিস্টেমের অসুবিধা কী কী?

সহকেত 🖥 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।

খ-বিভাগ (মান **ঃ** 8 × ১০ = ৪০)

```
১৬। COP-এর মান কীভাবে বাড়ানো যায়?
        উষ্টর সংক্রেন্ড 👩 অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৩ নং দ্রুষ্টব্য ।
১৭। নিমু তাপমাত্রায় হিমায়নের ব্যবহার ক্ষেত্রগুলো উল্লেখ কর।
       ঠিতর সংক্রেত 🛐 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোতর ৮ নং দুষ্টব্য।
১৮। মাল্টিস্টেজ ও ক্যাসকেড সিস্টেমের ৪টি করে পার্থক্য লেখ।
       (উচর সংক্রেড 📴 অনুশীলনী ৩ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দুউব্য :
১৯। সোলার হিট কোপায় ব্যবহৃত হয়?
       উত্তর সম্প্রেকত 🚱 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্রোন্তর ১ নং দুষ্টব্য ।
২০। হিমায়ক 695-এর ৪টি বৈশিষ্ট্য লেখ।
       🕏 হর সংক্রেত 🚱 অনুশীলনী ৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দুষ্টব্য ।
২১। খ্রিনহাউজ ইফেক্ট কমানোর উপায় বর্ণনা কর।
       ভিষন সম্ক্রেত 🛭 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য ।
২২। দ্রাই আইস তৈরির কৌশল বর্ণনা কর।
       🔞 ভর সম্প্রেক্ত 🔞 অনুশীলনী ৯ এর সংক্ষিত্ত প্রশ্নোত্তর ৮ নং দ্রষ্টব্য :
২৩। শিল্পক্ষেত্রে হিট পাস্পের ব্যবহার লেখ।
       (উচন সম্বেক্ত 🗗 অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য ।
২৪। হিট এক্সচেন্তার-এর প্রয়োজনীয়তা লেখ।
       🕃 ভর সংক্রেত 🚱 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।
'২৫। ইভাপোরেটিভ কুলার চিত্রসহ বর্ণনা কর।
       উত্তর সংক্রেত 🛭 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্রোন্তর ৬ নং দ্রষ্টব্য ।
                                            ণ-বিভাগ (মান $ ১০ × ৫ = ৫০)
২৬। স্তয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি বর্ণনা কর।
       ভিতর সম্ফেত 🕝 অনুশীলনী ২ এর রচনামূলক প্রশ্লোন্তর ৪ নং দ্রষ্টব্য।
২৭। ক্যাসকেড সিস্টেমের চিত্রসহ বর্ণনা কর।
       উচর সম্প্রকত 🗗 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোন্তর ৭ নং দ্রষ্টব্য :
২৮। সোলার হিট ব্যবহৃত অ্যাবজর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।
       উচর সম্ভেক্ত 🚱 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোন্তর ৬ নং দুষ্টব্য 🗵
२৯। कप्प्थमत परायमत की की छपाछप थाका প্রয়োজন, তা काच्या कत।
       🕏 ভর সমকেত 🔊 অনুশীলনী ৮ এর রচনামূলক প্রশ্রোত্তর ৩ নং দুষ্টব্য 🗆
৩০। একটি R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর।
       (উষ্টর সমক্রেত 🗗 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য :
৩১। একটি 175kW ক্ষমতাসম্পন্ন অ্যামোনিয়া ব্যবহৃত হিমায়ন চত্তের ঘনীডবন তাপমাত্রা 30°C এবং এক্সপানশন ডিভাইকে
       স্যাচুরিত তরদ প্রবেশ করে। ইভাপেরেটরের চাপ 2.9 বার। হিমায়ক –৪°C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। নির্ণয় কর ঃ
       (ক) চত্রের COP; (খ) কম্প্রেসরের ক্ষমতা; (গ) কমডেনসেশন ক্যাপাসিটি।
       তথ্যাদি ঃ H1 = 1464 kJ/kg; H2 = 1635 kJ/kg; H3 = 325 kJ/kg
       (উষ্টর সম্প্রেক্ত 🚱) অধ্যায়-১ এর উদাহরণ ১.৬ নং দুষ্টব্য ।
৩২ ।  হিমায়ক-১২ এর পরিবর্তে হাইড্রোজেন ব্লেন্ড চার্জ করার পদ্ধতি বর্ণনা কর।
       উচর সম্ফেত 🖪 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোন্তর ৫ নং দ্রষ্টব্য :
```

অ্যাডভাম্বড রেফ্রিজারেশন অ্যান্ড এয়ারকন্ডিশনিং

ব-বিভাগ (মান **ঃ ৪ × ১০ = ৪০**)

```
১৬: COP-এর মান কীভাবে বাড়ানো যায়?
        🕏 হর সংক্রেত 🚱 অনুশীলনী ১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রউব্য 🕆
১৭ 🗆 নিমু তাপমাত্রায় হিমায়নের ব্যবহার ক্ষেত্রগুলো উল্লেখ কর।
       😇 হর সম্বক্ষেত 📳 অনুশীলনী ২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৮ নং দুষ্টব্য :
১৮। মাল্টিস্টেজ ও ক্যাসকেড সিস্টেমের ৪টি করে পার্থক্য লেখ।
       (উষ্টর সহকেত 🗿 অনুশীলনী ৩ এর সংক্ষিত্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।
১৯ ৷ সোলার হিট কোখায় ব্যবহৃত হয়?
       🕏 হর সংক্রেত 🖪 অনুশীলনী ৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।
২০। হিমায়ক 695-এর ৪টি বৈশিষ্ট্য লেখ।
       (উডর সংক্রেড 🖫) অনুশীলনী ৬ এর সংক্রিপ্ত প্রশ্নোত্তর ৬ নং দুউব্য ।
২১। গ্রিনহাউজ ইফের কমানোর উপায় বর্ণনা কর।
        উচর সংক্রেন্ড 😝 অনুশীলনী ৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
২২। দ্রাই আইস তৈরির কৌশল বর্ণনা কর।
       (উডর সংক্রেড 🗗 অনুশীলনী ৯ এর সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দুষ্টব্য।
২৩। শিল্পক্ষেত্রে হিট পাস্পের ব্যবহার শ্বেখ।
       (উভর সম্ফ্রেড 🖁) অনুশীলনী ১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দুষ্টব্য।
২৪। হিট এক্সচেঞ্জার-এর প্রয়োজনীয়তা লেখ।
       ্রিষ্টর সম্বক্ষেত 🛐 অনুশীলনী ১১ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য।
২৫। ইভাপোরেটিভ কুলার চিত্রসহ বর্ণনা কর।
       উডর সম্মেক্ত 🛃 অনুশীলনী ১২ এর সংক্ষিপ্ত প্রশ্লোত্তর ৬ নং দ্রষ্টব্য ।
                                            গ-বিভাগ (মান ঃ ১০ × ৫ = ৫০)
২৬। ওয়াটার ইন্টারকুলার ব্যবহৃত তিন ধাপে সংকোচন পদ্ধতি বর্ণনা কর।
       ঠিতর সংক্রেন্ড 🔊 অনুশীলনী ২ এর রচনামূলক প্রশ্লোত্তর ৪ নং দ্রষ্টব্য।
২৭। ক্যাসকেড সিস্টেমের চিত্রসহ বর্ণনা কর।
       🔁 🗗 সংক্রেন্স 🚰 অনুশীলনী ৩ এর রচনামূলক প্রশ্নোত্তর ৭ নং দ্রষ্টব্য ।
২৮। সোলার হিট ব্যবহৃত অ্যাবজ্বর্পশন রেফ্রিজারেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর।
       🕏 হর সম্প্রকত 🚱 অনুশীলনী ৫ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য ।
২৯। কম্প্রেসর অয়েলের কী কী গুণাগুণ থাকা প্রয়োজন, তা ব্যাখ্যা কর।
       🖪 ভরু সম্মেক্ত 🛐 অনুশীলনী ৮ এর রচনামূলক প্রশ্নোত্তর ৩ নং দ্রষ্টব্য ।
৩০ । একটি R-12 সিস্টেমকে R-134a সিস্টেমে রূপান্তর করার পদ্ধতি বর্ণনা কর।
       (উষ্কর সম্প্রেক্ত 📴 অনুশীলনী ৯ এর রচনামূলক প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।
৩১। একটি 175kW ক্ষমতাসম্পন্ন অ্যামোনিয়া ব্যবহৃত হিমায়ন চক্রের খনীঙ্গবন তাপমাত্রা 30°C এবং এক্সপানশন ডিডাইস্কে
       স্যাচুরিত তরল প্রবেশ করে। ইভাপোরেটরের চাপ 2.9 বার। হিমায়ক 🗕৪°C তাপমাত্রায় কম্প্রেসরে প্রবেশ করে। নির্ণয় কর 🕏
       (ক) চক্রের COP; (খ) কম্প্রেসরের ক্ষমতা; (গ) কনডেনসেশন ক্যাপাসিটি।
       তথ্যাদি ঃ H1 = 1464 kJ/kg; H2 = 1635 kJ/kg; H3 = 325 kJ/kg
       ভিতর সংক্রেন্ড 🕝 অধ্যায়-১ এর উদাহরণ ১.৬ নং দুষ্টব্য ।
৩২। হিমায়ক-১২ এর পরিবর্তে হাইড্রোজেন ব্লেড চার্জ করার পদ্ধতি বর্ণনা কর।
       উত্তর সম্বক্তেত 🚱 অনুশীলনী ৯ এর রচনামূলক প্লাশ্লের ৫ নং দ্রউব্য ।
```

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং

৬৯ পর্ব পরিপুরক পরীক্ষা-২০১৬

[পরীক্ষার তারিব ঃ ২৩/০৬/২০১৬]

টেকনোলজি ঃ রেফ্রিজারেশন অ্যান্ড এয়ারকডিশনিং (প্রবিধান-২০১০)

বিষয় ঃ অ্যাডভাশড রেফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং

(বিষয় কোড ঃ ৭২৬১)

সময় ঃ ৩ ঘণ্টা

পূৰ্ণমান ঃ ১২০

ক ও খ বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে কোনো ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও। ক-বিভাগ (মান ৪২ × ১৫ = ৩০)

১। ইন্টার কুলার কী?

🝅 হর 🕝 ইন্টারকুলার হলো একটি মেকানিক্যাল ডিভাইস, যা সাধারণ তরল বা গ্যাস শীতল করার জন্য ব্যবহৃত হয়।

২। সাবকুলিং বদতে কী বুঝায়?

😘 হর 🕝 সাবকুলিং হলো এমন একটি প্রক্রিয়া, যার মাধ্যমে কোনো তরলের তাপমাত্রা তার সম্পৃক্ত তাপমাত্রার নিচে রাখা হয়।

৩। ব্যাক প্রেসার ভালভের কাজ কী?

ভিতর সম্প্রেক্ত 🗗 অনুশীলনী-৩ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

৪। ফুক পয়েন্ট বলতে কী বুঝায়?

ঠিচর সমকেত 🛮 অনুশীলনী-৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।

ে। সোলার কালেন্ট্র কী?

্ঠিচর সমক্ত 🗗 অনুশীলনী-৪ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

৬। রেট্রোফিট বলতে কী বুঝায়?

ঠিতর সংক্রেত 🖁 অনুশীলনী-৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য ।

9 1 HC blend की?

্ঠিছন। HC blend হলো একটি রেফ্জারেন্ট, যার অর্থ হলো Hydrocarbon blend। Freon-12 এর পরিবর্তে এই রেফ্জারেন্ট ব্রহত হয়

৮: মন্ত্ৰিল প্ৰটোকল কী?

উছর । ১৯৮৭ সালে বিভিন্ন দেশের বিজ্ঞানী ও সরকারি প্রতিনিধি মন্ত্রিলে CFC ব্যবহার সম্পর্কে কিছু সিদ্ধান্ত নেন। তাতে CFC উৎপালান হ্রাস ও হিমায়কের আবমৃত্তি নিষিদ্ধ এবং নতুন হিমায়ক উদ্ভাবনের ব্যাপারে সিদ্ধান্ত গৃহীত হয়। জলবায়ুর এই বিশ্বব্যাপী সামেলনই হলো মন্ত্রিল প্রটোকল

৯ । বিফ্রিজারেন্ট বিমেইক বলতে কী বুঝায়?

(১৯র সংক্রেত 👸 অনুশীলনী-৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।

১০। হিট পাম্প কী?

উচর সংক্রেত 🚱 অনুশীলনী-১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ২ নং দ্রষ্টব্য ।

১১ ৷ হিট এক্সচেঞ্চারের কাজ কী?

ঠিতর সংক্রেত 🖁 অনুশীলনী-১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য।

১২ ৷ ইভাপোরেটিভ কুলিং বলতে কী বুঝায়?

ভিতর সংক্রেত 🚱 অনুশীলনী-১২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রষ্টব্য ।

১৩। এল.এস.টি.ডি বলতে কী বুঝায়?

ভিতর সংক্রেত 🕏 অনুশীলনী-১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১৩ নং দ্রষ্টব্য ।

১৪ ৷ ফ্লাল গ্যাস বলতে কী ব্ঝায়?

🕉 চন্দ্র সংক্রেত 🖁 অনুশীলনী-২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১২ নং দ্রষ্টব্য ।

১৫। COP की?

ঠিচর সমকেত 👸 অনুশীলনী-১ এর অতি সংক্ষিত্ত প্রশোভর ৩ নং দ্রষ্টব্য।

ş

ર

২া

21

তং

৩১

৩২

<u>খ-বিভাগ (মান ঃ ৪ × ১০ = ৪০)</u>

```
কম্পাউন্ড ভেপার কম্প্রেশন সিস্টেমের সুবিধাগুলো লেখ।
  ১৬।
         (উচর সংক্রেন্ত 🖟) অনুশীলনী-২ এর সংক্ষিপ্ত প্রশ্নোন্তর ৭ নং দ্রাষ্টব্য।
         ফ্র্যাট প্লেট কালেষ্টরের চিত্রসহ সংক্ষেপে বর্ণনা দাও।
         (ইচর সমকেত 🛭 অনুচেছ্দ ৪.৩ নং এর প্লেট কালেকটর অংশ দ্রষ্টব্য।
        একটি সরল ভেপার কম্প্রেশন সাইকেলকে P-H diagram এর মাধ্যমে উপস্থাপন কর।
         ঠিচর সংক্রেন্ড 📴 অনুশীলনী-১ এর রচনামূলক প্রশ্লোত্তর ৭ নং দুষ্টব্য ।
 ১৯। তাল রেফ্রিজারেন্ট অয়েলের কী কী গুণাবলি থাকা প্রয়োজন, লেখ।
         ভিতর সংক্রেন্ড 💅 অনুশীলনী-৮ এর সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য।
        CFCs এর সাথে ওজনের (O3) রাসায়নিক বিক্রিয়া লেখ।
        (উভর সম্বেত 🗗) অনুশীদনী-৭ এর রচনামূলক প্রশ্লোত্তর ৯ নং দ্রষ্টব্য।
 ২১। দুটি CFC ও দুটি HFC রেফ্রিজারেন্টের নাম ও রাসায়নিক সংকেত লেখ।
         (উষ্টর সংকেত 👸) অনুচেছদ ৬.৫ নং দুষ্টব্য ।
 ২২। রেফ্রিজারেন্ট রিকোভারি ও রিসাইক্লিং এর ব্যাখ্যা দাও।
        🗦 🛪 সংক্রেত 🖪 অনুশীলনী-৯ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।
 ২৩ i ইন্ডাপোরেটিভ কুলিং এর চারটি প্রয়োগক্ষেত্র লেখ।
        (ঠিচর সমকেত 🛭 অনুশীলনী-১১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য ।
 ২৪। হিট পাস্পের প্রকারভেদ দেখ।
        ভিচর সংক্রেত 🛃 অনুশীলনী-১০ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য।
২৫ : একটি হিট এব্লচেঞ্জার ডিজাইনে কী কী ফ্যান্টর বিবেচনা করতে হয়, লেখ :
        উচর সংক্রেত 💅 অনুশীলনী-১১ এর সংক্ষিপ্ত প্রশ্নোন্তর ৫ নং দ্রষ্টব্য ।
                                            গ-বিভাগ (<u>মান ঃ ১০ × ৫ = ৫০)</u>
২৬। ওয়াটার ইন্টারকুলার ও লিকুইড সাবকুলার ব্যবহৃত টু-স্টেজ কম্প্রেশন পদ্ধতির প্রবাহচিত্র ও P-H ডায়াঘাম অঙ্কন করে
        বর্ণনা কর।
        (ঠঁচর সংক্রেড 🗗) অনুশীলনী-২ এর রচনামূলক প্রশ্নোন্তর ২ নং দ্রন্টব্য।
২৭। টু-স্টেজ ক্যাসকেড সিস্টেমের P-H ভায়াগ্রাম অঙ্কন করে বর্ণনা কর।
        ভিচর সংক্রেত 📴 অনুশীলনী-৩ এর রচনামূলক প্রশ্নোন্তর ৯ নং দ্রষ্টব্য।
২৮। সৌরশক্তি-চালিত একটি ভেপার কম্প্রেশন রেফিজারেশন পদ্ধতির প্রবাহচিত্র বর্ণনা কর।
       🕭 হর সহকেত 🗗 অনুশীলনী-৫ এর রচনামূলক প্রশ্নোন্তর ১ নং দ্রষ্টব্য ।
২৯। রেফ্রিজারেশন ইউনিট হতে হিমায়ক রিকোভারি করার পদ্ধতি চিত্রসহ বর্ণনা কর।
       😇 🕫 সংক্রেত 💅 অনুশীলনী-৯ এর রচনামূলক প্রশ্নোত্তর ৬ নং দ্রষ্টব্য :
৩০। একটি আদর্শ হিমায়কের কী কী গুণাবলি থাকা প্রয়োজন, বর্ণনা কর।
       (ঠিছর সহকেত 📴) অনুশীলনী-৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দুষ্টব্য।
       কুলিং ও হিটিং মোডসহ হিট পাম্পের কার্যপদ্ধতি বর্ণনা কর।
1 CO
       ঠিচর সম্ফেক্ত 🚱 অনুশীলনী-১০ এর রচনামূলক প্রশ্নোন্তর ৪ নং দুষ্টব্য ।
```

ডিপ্লোমা-ইন-ইঞ্জিনিয়ারিং ৬ষ্ঠ পর্ব সমাপনী পরীক্ষা-২০১৬

[পরীক্ষার তারিখ ঃ ২৭/১২/২০১৬]

টেকনোলঞ্জি ঃ রিফ্রিজারেশন অ্যান্ড এয়ারকভিশনিং (প্রবিধান-২০১০)

বিষয় ঃ অ্যাডভাষড় রেফ্রিজারেশন অ্যান্ত এয়ার-কভিশনিং

(বিষয় কোড ৪ ৭২৬১)

য়ে ঃ ৩ ঘটা

পূৰ্ণমান ঃ ১২০

ক ও খ-বিভাগের সকল প্রশ্নের এবং গ-বিভাগের যে-কোনো ৫ (পাঁচ)টি প্রশ্নের উত্তর দাও।
<u>ক-বিভাগ (মান ঃ ২ × ১৫ = ৩০)</u>

এনথালপি বলতে কী বোঝায়?

ঠিচর সংক্রেত হ্ব অনুশীলনী-১ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১০ নং দ্রষ্টব্য। রিক্রেইম (Reclaim) কী?

ইঙর সম্বেক্ত । অনুশীলনী-৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ও নং দ্রষ্টব্য। রেট্রোফিট (Retrofit) কী?

ঠিষর সংক্রেত ব অনুশীলনী-৯ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য।
ODP ও GWP-এর পূর্ণরূপ কী?

উষ্টর সংক্রেত ঃ অনুশীলনী-৭ এর সংক্ষিপ্ত প্রশ্নোত্তর ৪ নং দ্রষ্টব্য। ওজন (O₃) এর সাথে Cl-এর রাসায়নিক বিক্রিয়া লেখ।

ত্রিষ্কর সথকেত ব অনুশীলনী-৭ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য। দুটি জিওট্রেপিক (Zeotropic) রিফ্রিজারেটরের নাম লেখ।

্ঠিতর সম্মক্ত ব্র অনুশীলনী-৮ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৮ নং দ্রষ্টব্য।
Refrigerant Oil-এর কাজ কী?

ক্রকত বি অনুশীলনী-৮ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৯ নং দ্রষ্টব্য। ইডাপোরেটিক কুন্দিং স্পিস্টম বলতে কী বোঝায়?

্ঠিছর সংক্রেন্ত ব্র অনু^{জ্ব}ননী-১২ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ১ নং দ্রম্ভব্য। হিট এক্সচেঞ্জারের কাজ ক্ষিণ্

ঠিচর সংক্রেন্ত ভ অনুশীলন -১১ এর অতি সংক্ষিত্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য। রিফ্রিজারেটিং ইফেন্ট বলতে কী বোঝায়?

্র্রান্তর সম্প্রকাত ব্র অনুশীলনী-১ এর অতি সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রাষ্টব্য। কভেন্সারের দক্ষতা কী কী বিষয়ের ওপর নির্ভর করে?

ঠিছর সম্বক্তে ব্র সিলেবাস বহির্ভ্ত : দুটি রিফ্রিজারেন্ট অয়েল-এর নাম লেখ :

তিষ্কর সহকেত। অনুশীলনী-৮ এর অতি সংক্ষিপ্ত প্রশ্নোতর ৮ নং দ্রষ্টব্য। ক্যাসকেড সিস্টেম রুলতে কী বোঝায়?

্ঠিছর সংক্রেত

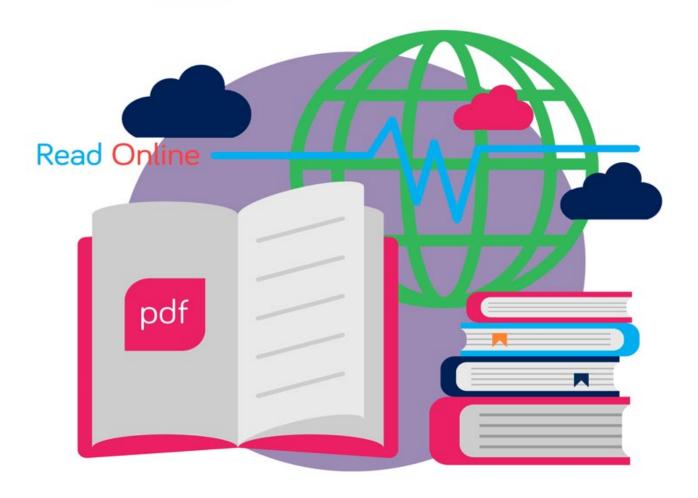
অনুশীলনী-৩ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ১ নং দ্রষ্টব্য।
একটি রিফ্রিজারেশন সাইকেলের p-h ভায়াম্মাম অন্ধন করে জোনগুলোর নাম লেখ।

্র্রান সংক্রের প্র অনুশীলনী-১ এর অতি সংক্রিপ্ত প্রশ্নোত্তর ২ নং দ্রাষ্টব্য। সোলার কান্তেক্টর কী?

উষর সহকেত । অনুশীলনী-৪ এর অতি সংক্ষিপ্ত প্রশ্লোন্তর ৩ নং দ্রষ্টব্য।

00

٠,


খ-বিভাগ (মান ঃ ৪ 🗴 ১০ = ৪০) আদর্শ হিমায়কের গুণাবলি **লেখ**। 🕏 হর সম্ফেন্ড 🗾 অনুশীলনী-৬ এর সংক্ষিপ্ত প্রশ্নোত্তর ১০ নং দ্রষ্টব্য। ১৭: হিট পাম্প ব্যবহারের উদ্দেশ্যগুলা লেখ। (ঠিচর সম্ফেক্ত 🛭 অনুশীলনী-১০ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৪ নং দ্রষ্টব্য : ১৮: পরিবেশ বাদ্ধব হিমায়ক বলতে কী বোঝায়? 😎 সম্প্রকত 🗗 অনুশীলনী-৭ এর অতি সংক্ষিপ্ত প্রশ্নোন্তর ৬ নং দ্রষ্টব্য । ১৯ ৷ সোলার হিটিং কত প্রকার ও কী কী? **ত্তিহর সহক্রেত 🚮** অনুশীলনী-৪ এর সংক্ষিপ্ত প্রশ্নোত্তর ৩ নং দ্রষ্টব্য। ২০: মান্টিস্টেজ কমপ্রেশন পদ্ধতির সুবিধা লেখ। (উচর সমকেত 🗗 অনুশীলনী-২ এর সংক্ষিপ্ত প্রশ্নোত্তর ৭ নং দ্রষ্টব্য। ২১। কাউন্টার ফ্লো হিট এক্সচেঞ্চারের চিত্র অন্ধন কর। **(উচর সহকেত 💅)** অনুশীলনী-১১ এর সংক্ষি**ন্ত** প্রশ্নোত্তর ৬ নং **দ্রষ্টব্য** । ২২। মান্টিস্টেজ ও ক্যাসকেড সিস্টেমের মাঝে পার্থকা লেব। [উচর সম্প্রকত 🗗 অনুশীলনী-৩ এর সংক্ষিপ্ত প্রশ্নোত্তর ৫ নং দ্রষ্টব্য । ২৩ ৷ সাব-কুলিং কেন করা হয়? [উচন সম্প্রেক 🗗] ২.৫ নং অনুচেছদ দ্রষ্টব্য 🙃 ২৪। Simple evaporative cooling system-এর সীমাবদ্ধতা শেখ। [উচর সহকেত 🔄 ১২.৬ নং অনুচ্ছেদ দ্রষ্টব্য । ২৫ - COP বাড়ানোর উপায়গুলো লেখ। 🕏 চর সহকেত 🛂 অনুশীলনী-২ এর রচনামূলক প্রশাবলি ৫ নং দ্রষ্টব্য -গ-বিভাগ (মান **ঃ ১০ × ৫ = ৫০**) ২৬। প্যাড টাইপ ইভাপোরেটিভ কুলারের চিত্রসহ বর্ণনা দাও। 🕏 চর সহকেত 🗗 অনুশীলনী-১২ এর রচনামূলক প্রশ্নাবলি ৪ নং দ্রষ্টব্য 🕫 ২৭। ওয়াটার ইন্টারকুলারসহ খ্রি-স্টেজ কম্প্রেশন সিস্টেমের কার্যপ্রণালি চিত্রসহ বর্ণনা কর। (উচর সম্ফেক্ট 🗗 অনুশীলনী-২ এর রচনামূলক প্রশ্নাবলি ৪ নং দুট্টব্য । ২৮। হিট এক্সচেম্বার (Heat Exchanger) ডিজাইনে বিবেচ্য বিষয়গুলো লেখ। **ঠিচর সংক্রেত 🛃 অনুশীলনী-১১ এর রচনামূলক প্রশ্নাবলি ৫ নং দুউব্য** 🗵 ২৯। সৌরশক্তি-চালিত ভেপার কমপ্রেশন সিস্টেম চিত্রসহ বর্ণনা কর। (উষ্টর সম্প্রকৃত 🖁) ৫.৩.১ নং অনুচ্ছেদ দ্রষ্টব্য । ৩০। R-12 ব্যবহৃত হিমায়ক প্ল্যান্টের RE = $110\,\mathrm{kj/kg}$ এবং V_C = $90.06\,\mathrm{L/kg}$ । এটির $5\mathrm{cm} imes 5\mathrm{cm}$ ব্যাসার্থ ও স্ট্রোক দৈর্ঘ্যের একটি রেসিপ্রকেটিং কম্প্রেসরের গতি 1500 R.P.M এবং ডলিউমেট্রিক ইফিসিয়েদি 76% হলে ঐ কম্প্রেসরের তান্ত্রিক অবক্ষমতা কত? (টারর সংক্রেত 💅) অধ্যায়-১ এর উদাহরণ-১.৭ নং দ্রষ্টব্য 🖹 ৩১ ৷ টু-স্টেজ ক্যাসকেড রিফ্রিজারেশন পদ্ধতি চিত্রসহ বর্ণনা কর ৷ ঠিতর সংক্রেত 🛐 অনুশীলনী-৩ এর রচশামূলক প্রশ্লাবলি ৯ নং দুটব্য। ৩২ $_{\perp}$ ু একটি $_{
m R}$ $_{
m 12}$ হিমায়ন যম্ভের ক্ষমতা 30 টন, যার ইডাপোরেটিভ তাপমাত্রা ($_{
m 10^oc}$) এবং কভেপি ভাপমাত্রা 35 $_{
m c}$ ৷ হিমায়ক কদেপ্রসরে প্রবেশের পূর্বে $5^\circ c$ তাপমাত্রায় উত্তঞ্জ হয়। সম্পৃক্ত তরলের এনথালপি $230 {
m kj/kg}$; সম্পৃক্ত বাস্পের এনথালপি

330kj/kg, সুপারহিটেড বাস্পের এনখালপি 360kj/kg হলে নির্ণয় কর ঃ

(ক) হিমারকের পরিমাণ; (খ) কম্প্রেসরের ক্ষমতা; (গ) COP; (ঘ) কভেদারের ক্ষমতা।

(ইছর সংক্রেত 🛐 অধ্যায়-১ এর উদাহরণ-১.১০ নং দুটব্য ।

E-BOOK

- www.BDeBooks.com
- FB.com/BDeBooksCom
- BDeBooks.Com@gmail.com